SYSTEMS OPTIMIZATION LARORATORY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-4023

MINQS 5.5 USER’S GUIDE

by
Bruce A. Murtagh® and Michael A. Saunders

TECHNICAL REPORT 50L 83-20R

December 1983
Revised Jan 1987, Mar 1093, Feb 1995, Jul 1508

Copyright © 1983-1998 by Stanford University

*Graduate School of Management, Macquarie University, Sydney, NSW 2109, Australia.

Research anhd reproduction of this report were partially supported by National Science
Foundation Grants DCR-8413211, ECS-8312142 and DDM-9204208; US Department of
Energy Contract DE-AADI-T6SF000326 PA# DE-AS03-76ER72018 and Grant DE-FGO03-
92ERZ5117; Office of Naval Research Grants NO0U14-85-K-0343 and N(0014-90-J-1242; and
US Army Research Office Contract DAAG29-84-K-0158.

Any opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the above sponsora.
Reproduction in whole or in part is permitted for any purpoees of the United States Gov-

ernmemt. This document has been approved for public release and sale; its distribution is
unlimited.

PREFACE

Since the middle of 1980, approximately 150 academic and research institutions around the
world have installed MINOS/AUGMENTED, the predecessor of the present system. About 30
further installations exist in private industry. With enquirics continuing to arrive almost daily, the
need for a combined linear and nonlinear programming system is apparent in both envirenmenta.
To date, many users have been able t¢ develop substantial nonlinear models and have come to
be fairly confident Lthat the Optimal Solution message actually means what it says. Certainly,
other less joyful exit messages will often have greeted cager cyes. These serve to emphasize that
model building remains an arf, and that nonlinear programs can be arbitrarily difficult to solve,
Nevertheless, the success rate has been high, and the positive response from users with diversa
applications has inspired us to pucsue further development.

MINOS 5.0 is the result of prolonged refinements to the same basic algorithma that were in
MINOS/AUGMENTED:

¢ the simplex method (Dantzig, 1951, 1963},

* a quasi-Newton method (very many authors from Davidon, 1959, onward),
e ihe reduced-gradient method { Wolfe, 1962}, and

s a projected Lagrangian method (Robinson, 1972; Rosen and Kreuser, 1972).
From numerous potential options, it has been possible to develop these particular algorithms into
a relatively harmonious whoie. The resulting system permits the solution of both small and large
probiems in the four main areas of smooth optimization:

¢ linear programming,

« unconstrained optimization,

¢ linearly cenatrained optimisation, and

» nonlinearly constrained optimisation.

In rare cases, the quasi-Newton method may require excessive storage. We have chosen not to
provide a nonlinear conjugate-gradient method, or a truncated linear conjugate-gradient method,
for this situation. Instead, we retain the quasi-Newton method throughout, restricting it to certain
subspaces where nccessary. (The atrategy lor altering the subspaces remains experimental.)

We regret that other obvious algorithms (such as integer programming, piece-wise smooth
optimization, the dual simplex method) are still not available. Nor are ranging procedures or

parametric algorithms. Sensitivity analysis is still confined to the usual interpretation of Lagrange
muitipliers.

As before, MINOS 5.0 is a stand-alone system that is intended lor use alongside commercial
mathematical programming systems whenevor such facilities are available. The systems should
compleinent cach other,

To users of MINOS/AUGMENTED, the most apparent extensions are a scaling option (lor
linear constraints and variables anly), and the ability to eslimate some or all gradients numerieally,
if they are not computed by the user. On a more mundane level, the names of the user subroutines
for computing nonlinearities have been changed from CALCFG and CALCON to FUNOBJ and FUNCON,
and two new paramecters allow access to the workspace used by MINOS.

Internally, one of the major improvements has been the development of a new basis-handling
package, which forms the foundation of LUSOY, (Gill, ¢l al., 1988}, a sct of routines for computing
and updating a sparae LU [actorization. This package draws much from the work of Reid {1978,
1082). It replacea the P4-based procedures in MINOS/AUGMENTED (Saunders, 1976) and is

y
i

Preface

substantially more cficient on problems whose basis matrices are not close to trinngular. As
before, column updates are performed by the method of Bartels and Golub (1969, L971), but the
implementation is mere efficient and there is no savere degradation arising from large numbers
of “spikes”. We venlure to say that LUSOL is +he first truly stable basis package that has been
implemented for production use.

A further vital improvement has been the development of two new linesearch procedures
(Gill, et al., 1879) for linding a step length with and without the aid of derivatives. In particular
they cater for [unction values that are somewhat “noisy” —a comunen practical circumstance.

From a soltware engineering viewpoint, the source code has been restructured to case the
problems of maintenance and future development. MINOS still stands lfor Modular In-core
Neonlincar Optimization System, and we have done our best to respect the implications of the
“M". Nevertheless, MINQS 5.0 remnains a parametcr-driven system. It is a speeding train on a
railroad that has parallel tracks and many switches but few closed circuits. Its various modules
cannot be called upon in an arbitrary order, In fact, there are 80 parameters that can be set if
necessary—these are the switching points along the railroad. Fortunately, only a handful need
be set for any particelar application. In most cases, the default values ara appropriate for large
and small problems alike. ’

For interactive users, a new feature is the SUMMARY file, which provides at the terminal
a brief commentary on the progtess of a run. Unfortunately, a two-way conversation is not
possible. The only input engendered by this feature is an occasional dive for the Break key to
abort an errant run. While rarely called upon, such a facility can be crucial to the security of
one's computer funds.

Threughout the development of MINOS, we have received a great deal of assistance from
many kind people. Most especially, our thanks go to Philip Gill, Walter Myrray and Margaret
Wright, whose knowledge and advice have made much of this work possible. They are largely
responsible for the lincsearch procedures noted above (which are as vital to noniinear optirnization
as basis factors are to linear programming), and they are authorities on all of the algorithms
employed within MINOS. Their patience has been called upon continually as other important
work at SOL either languished or fell unfairly on their shoulders.

Further to basis factors, we acknowledge the pioncering work of John Reid in implementing
the Markowitz-based LU factorization and the Bartets-Golub update. The LUSQL procedures in
MINOS 5.0 owe much to the ingenuity embodied in his LAO5 package. :

Users have naturally provided an essential guiding influence. [n some cases they are algorithm
developers themselves. At home, we have had constant encouragement from George Dantzig and
the benefit of his modeling activity within SOL, notably on the energy-economic model PILOT.
We thank him warmly for bringing the Systems Cptimization Laboratory into existence. We also
thank Patrick MceAllister, John Stone and Wesley Winkler for the feedback they have provided by
tunning various versions of MINOS during their work on PILOT. {We note that PILOT has grown
te 1500 constraints and 4000 variables, and now has a quadratic abjective. I'rom our perapcctive,
it is a nontrivial test probiem!) Likewise, Alan Manne has provided encouragement and assistance
from the beginning. "I'wo of his nonlinear economie models have been invaluable as test probiems
(and are included on the MINQS distribution tape). We also thank him and Paul Precket for the
development of procedures for solving sequences of related problems (Preckel, 1980). The main
ingredients of these procedures are now an integral part of MINOS.

From industry, we have received immensc benclit from the working relationship beiween
SUL and Robert Burchett of the General Electric Company (Electric Utility Systems Engincering
Department) in Schenectady, New York. Many algorithmic and user-oriented delails have resulted

i

Preface

from his experience and {tom his intersat in the fine points of eptimizstian. Theee YEArY ago we
did not envisage that problems inveiviag thousands of ronrlinear conatraints would saon be ::lved
successfully. Rob constantly pushed test versions of MINOS to theie limits, and inspired the
deveiopment of techniques to extend those limits. We thank him for his tireless contributions

We are also grateful to Zenon Fortuna, Steven Gorclick, Mare Hellman, Thomas McCormick
Larry Nazareth, Scott Rogers, john Rowse and John Tomlin for their heipiul suggestions andlm'-
assigtance in teacking down bugs. Fiaally, we thank the staff of the Office of Technoiogy Licensing
and the Information Technology Services at Stanford {niversity for undertaking the task of
distributing MINQS.

Most of the software development was carried out at the Stanfaed Linear Acceierator Center
with the aid of the Wylbur text editor and the University of Waterloo's WATFIV compiler, This

User's Guide was typesat using TEX®, with aditorial amistance from Philip Gill and Margaret
Wright.

Bruce Murtagh
University of New South Wales

Michael Saynders
Stanford University

December, (983

Preface to MINOS 5.5

This manual is a revision of the 1983 MINOS 5.0 User’s Guide. The main changes implemented in
MINOS 5.5 are summarized in the Appendices. A significant change is that MINQS is now callable
as a subroutine.

Certain parts of this Guide are no longer selevant, but Chapter 7, for exampie, still conveys the
main implementation philosophy. For exact details, please see miminos.doc in the distribution
files, '

MINOS is licensed by Stanford University. Fortran 77 source code for all common marhines
{mainframes, workstations and PCs) is available from SBST:

Stanford Business Sofuware, Inc. saiea@SBSI-SOL-Optimize.com
2672 Bayshote Packway, Suite J04 {650) 962-8719

Mountain View, CA 04043 (650) 962-1869 Fax

Contact: Ms Radhika Thapa Manager, Software Distribution

SBSI handles individual and site licenses, both non-profit and commercial. [t should be noted
that SBSI is separate and independent from Stanford University.

D E Knoth. TEX and METAFONT, New Diroctions in Typesetting, Amesican Mathesutical Society aad Digital
Press, Bedford, Massachuserts (1979). -

iid

1B

Special comtnerciai censes, such as those invoiving the re-sale of MINCS as part of a larger
package, are negotiated by

Hans Wiesendanger Hans®0TLmail stanford .edu

Office of Technolegy Licensing hetp./ /www.stanford.cdu/group/OTL/
Stanford University {6531 723-0651

900 Weich Road, Suite 350 (650) 723-7295 Fax

Pale Alto, CA 94304-1850)

For many applications involving linear and nonlinear models, we recommend the use of algebraic
odeling languages. Two of the most widely used systems are GAMS and AMPL. They provide a
convenient interface to MINOS and to several other linear, integer and nonlinear programming sys-
tems (notably CPLEX, OSL and CONOPT). Implementations are available for PCs, workstations
and mainframes.

GAMS Development Corporation http://www.gams.com/

1217 Potomac Street NW sales@gams.com
Washington, DC 20007 {202) 342-0180
AMPL development hitp:/ /www.ampl.com/

info@ampf.com

AMPL sales and AMPL Plus http://www.modeling.com
info@modeling.com

CONTENTS

1. INTRODUCTION e e e e e e e e e e e e s 1
1.I Linear Programming« « « 0 v« v v v e e e e e e e e e e e 1
1.2 Neonlinear Objective o v o o 0 L L L L L e e s s e e e e e e e e 2
1.3 Nenlinear Constrainls & « v 0t v v v e e e e e e e e e e e e 3
1.4 Problem Formulation © . . .« . e e e e e e e e e e e 5
1.3 Restrictions . v & & v o v o v b h 0 e e e e e et e e e e e e e e e e e 5
i 8
L7MputDataFlow« o . o o v v o s e e e e e e e e e e e e e e 7
1.8 Multiple SPECS FIled + ¢ v« v v v v e v b e m e e e e e e e 8
1.9 Internal Modifications « + . . . 0 e e e e e e e e e e e e e e 8
2. USER-WRITTEN SUBROUTINES o o v e ot e e e e e 9
2.1 Subroutine FUNOBJ « vt ¢« v v o ¢ v v e s 0 v S e e e e e e e . 3
2.2 Subroutine FTUNCON i i v i et t e e e e s e e e s e e e e e 11
2.3 Constant Jacoblan Blements v . . + « « . v ¢« v v L 0 e s e e e e 12
2.4 Subroutine MATMOD « .« . ¢ ¢ v v v o v 4 v S K
2.5 Subroutine MATCOL e e e e e e e e e e e e e e . 15
2.6 Matrix Data Structuze 0 0 0 0 e e e e e e e e e 15
3. THESPECS FILE e e e e e e e e e e e e e e e e e 17
3.1 SPECS File Format ., e e e e e e e e e e e e e e 17
3.2 SPECS File Checklist and Defaults o o ¢« v v v v v ¢ v v o 18
3ASPECS File Definitions . - . . .« v ¢ b i i et e h e e e s e n
4. THEMPS FILE e e e e e e s e r e e e s e e e s 11
4.1 The NAME Card O, e e e e e e {1
42 The ROWS Section v ¢ « « « « e e e e e e e e 42
4.3 The COLUMNS Section . « &« « 4 v v v v« v v v o v e e m e e e e e e e e 43
4.4 The RHS Section . . + v ¢ & v v v v v v v v v o s = s o R |1
4.5 The RANGES Section e 45
486 The BOUNDS Section .« . « ¢ v ¢ 4 s & o o o « s s o s s« « 5 = s+ s s o« « o o s 48
4.7 Comment Cards & L . v i e e e e e e e e e e e e e e e s 48
4.8 Restrictions and Extensions in MPS Format « v v v v v v v r e e e 48
B. BASISFILES« « v v i s et e i e e e e e e e e e e e e 49
51 OLD and NEW BASIS Files, e e e e e e e e s 49
52PUNCH and INSERT Files e e e e e e e e e s 52
53DUMP and LOAD Files+ . .+« 4 . e e e e e e e e e 53
5.4 Restarting Modified Problems , 000000 e e 55
B. QUTPUT . . . i i e e v 4 s s 4« s s o b 2 s v s s v s o a4 s P 12
6.1 Iteration Log Cr e e e e e e e e e s Ch e e e e e e e s 57
6.2 Basis Factorization Statisties « oo 0o R 1 |
6.3 EXIT Conditions 4 « & & ¢ « ¢ v & « s « I
6.4 Solution Qutput e 70
65 SOLUTIONFile & v 0 v v v v v v s o a0 e e L e e e e e e e e 72
6.6 SUMMARY Tile . . . « . & v 4 4 o i vt e vt e o e h e e e B

Coatents

7. SYSTEM INFORMATION

7.1 Distribution Tape ;z
7.2 Source Files, .. e e e e e e e e e e e e e e e e 8
T3ICOMMONBIlocks o e .. .78
7.4 Machine-dependent Subroutines . . .,, 79
7.5 Subroutine Structure e e e e e e e e e e e e e e e e e 83
7.6 Test Problems e e e e e e e e e e e e e e 83
8. EXAMPLES e e e b e e e e e e e e e e e e e e e e e e 85
8.1 Linear Programming o 0 s e e e e e e e e e e e e 88
8.2 Unconstrained Optimigation ¢ ¢ ¢« i vt i e e e 88
8.3 Linearly Constrained Optimizatien . . ., o o0 o oo o L. 0Q
8.4 Noniinearly Constrained Optimisation B T
8.5 Use of Subroutine MATHOD & v v v v v v e e e e . 109
8.8 Thingsto Remember« .. e e e e e e e 112
REFERENCES e e e ke e e e e e e e e e e e s 113
INDEBX v ., e e e e e . e e e e e e e 115

APPENDIX A. MINOS 5.5
APPENDIX B. Subroutine minoss

1.1 Linear Programming 1

1. INTROOUCTION

MINOS is a Fortran-based computer system designed to solve large-scale optimization problems
expressed ia the lollowing standard form:

minimize F{z) + ¢Tz + dTy (1)
=y
subject to f{z) + Ay = by, {2}
Az + Agy = by, (3)
z
i< <
<())<w)

where the vectors ¢, d, 8, b9, {, u and the matrices A;, A3, Ay are constant, F{z) is a smooth
scalar function, and f(z) is a vector of smooth functions { /'(z)}. Ideally the first derivatives
(gradicnts) of F(z) and f*(z) should be known and coded by the user. (if only some gradients are
known, MINOS will estimate the missing ones using finite differences.)

The ny components of z are calied the nonlinear variables, and the ngz components of y are
the linear variables. Similarly, the m equations {2) are called the nonlinear conatraints, and the
mq equations (3) are the jinear constraints. Equations (2} and {3) together are called the general
constraints. We define m = m; + mg and n = n; + ns.

The constraints (4) specify upper and lower bounds on ail veriables. Thess are fundamental
tc many problem formulations and are treated specially by the solution algerithms in MINOS,
Some of the components of ! and u may be —-oc or +co if desired.

Similar bounds may be defined for the general constraints (2], (3}. These constraints may
therefore be thought of as taking the form

L fz)+ Ay €y,

la < A2z + Ay £ ug,

though for historical reasona the bounds are specified in terms of a right-hand side b; and a range
u; = ;.

In the following sections we introduce some of the terminology required, and give an overview
of the algotithms used in MINOS and the main system features.

1.1 Linear Programming

If the functions F(z) and f{z) are absent, the problem becomes a linear program, Since there is
no need to distinguish between linear and nonlinear variables, we prefer to use z rather than yp.
1t is also convenient computationally to convert all general consiraints into equalities, with the
only inequalities being simple bounds on the variables. Thus, we will write linear programs in
the form

minimize ¢’z subject to Ar+ Is=0, (< (2) <y,
2

where the elements of z are called structural variables (or column variables) and s is a set of slack
variables (called logical variables by some authors). The bounds { and u are suitably redefined.

MINOS solves linear programs using a reliable implementation of the primal simplex method
iDantzig, 1963). The simplex method partitions the constraints Az + [s = 0 into the form

B:,"'N:N =0,

where the basis matrix I is square and nonsingular. The elements of z, and z, are called the
basic and nonbasic variables respectively; they are a permutation of the clements of z and s,
Al any given stage, each nonbasic variable is equal to its upper or lower bound, and the basic
variables take on whatever values are needed to satisfy the gencral constraints. (Clearly they
may be computed by solving the linear equation 8z, = —Nz,.} It can be shown that if an
optimal solution to a linear program exists, then it has this form. The simplex method reachea
such a solution by performing a sequence of iterations, in which one column of B is replaced by
one column of N (and vice versa), until no such interchange can be found that will reduce the
value of ¢Tz.

If the components of z, do not satisfly their upper and lower bounds, we say that the current
point is infeasible. In thia case, the simplex method first aims to reduce the sum of infeasibilities
to zero.

MINOS maintains a sparse LU factorization of the basis matrix B, using a Markowits
ordering scheme and Bartels-Golub updates, as implemented in the LUSOL package of Gill,
Murray, Saunders and Wright {1986). (For a deacription of the concepts involved, see Reid, 1978,
1982.) The basis factorisation is central to the efficient handling of sparse linear and nonlinear
constrainta.

1.2 Nonlinear Objactive

When nonlinearities are confined to the term F(z) in the objective function, the problem is a
linearly constrained nonlinear program. MINOS solves such problems using a reduced-gradient
algorithm (Wolfe, 1962) in conjunction with a quasi-Newton algorithm (Davidon, 1959). The
implementation follows that described in Murtagh and Saunders (1978).

In this case, the constraints Az + I's = 0 are partitioned into the form

Bxg+ Sze+ Nzy =10,

where z, is a set of superbasic variables. At a solution, the basic and superbasic variables will
lie somewhere between their bounds, while the nonbasic variables will again be equal to one of
their bounds. In broad terms, the number of superbasic variables (the number of columna in S)
is a measure of how nonlinear the problem is. Let this number be a. (The context will always
distinguish s from the vector of siack variables.) In many practical cases we have found that s
remains reasonably small, say 200 or less, regardless of the size of the problem.

In the reduced-gradient algorithm, z, is regarded as a set of independent variables that are
free to move in any desirable direction, namely one that will impeove the vaiue of the objective
funetion (or reduce the sum of infeasibilities). The basic variables can then be adjusted in order
to continue satisfying the linear conatraints.

If it appears that no improvement can be made with the current definition of B, § and N,
some of the nonbasie variables are selected to be added to S, and the process is repeated with an
increased value of s. At all stages, il a basic or superbasic variable encounters one of its bounds,
that variable is made nonbasic and the value of s is reduced by one.

Users familiar wilh linear programs may interprat the simplex method as being exactly the
above process, with s oscillating between 0 and 1. (Later, one step of the simplex method or the
reduced-gradient method will be called a minor iteration.)

1.3 Nonlinear Constraints 3

A certain operator Z will [requently be useful for descriptive purposes. In the reduced-

gradient algorithm it takes the form
-B-1s
Z = I .
¢

though it is never computed explicitly. Since it has full column rank and satisfies (B S N)Z =0,
we say that Z spans the null space of the constraint matrix (A I). Given an LU lactorization
of the basis matrix B, Z allows us to work within a region defined by the linear constraints.

An important part of MINQOS is a stable implementation of the quasi-Newton algorithm
for optimizing the superbasic variables, This can achieve superlinear convergence within each
relevant subspace (defined by the current B, § and N). It obtains a sesrch direction p, for the
superbasic variables by solving a system of the form

RTRp, = -27y,

where g is the gradient of F(z), Z%g is the reduced gradient, and R is a dense upper triangular
matrix that is updated in various ways in order to approximate the reduced Hesaian according to
RTR =3 ZTH Z, where H is the matrix of second derivatives of F(z) (i.e., the Hessian).

Once p, is available, the search direction for all variables is defined by p = Zp,. A line
search is then performed to find an approximate solution to the one-dimensional problem

minimize F(z + ap) subjectto 0 < a < Amexs

where aq,x is determined by the bounds on the variables. Another important part of MINOS is
the step-length procedure used in the line search to determine the step-length a. Two different
procedures are used, depending on whether all gradients are known. (See Gill, Murray, Saunders
and Wright, 1979.) Interested users can influence the amount of work involved by setting a
parameter called the LINESEARCH TOLERANCE.

Normally, the objective function F(z) will never be evaluated at a peoint z unless that point
satisfies the linear constraints and the bounds on the variables. An exception is during a finite-
difference check on the calculation of gradient elements. This check is performed at the starting
point 2o (which may be specified by the user). MINOS ensures that the bounds on the variables
are satisfied, but in general the starting point will not satisfy the general linear constraints. If
F{zg) is undefined, the gradient check should be suppressed, or zo should be re-specified.

For detaiis of the matters mentioned here and maany other essential aspects of numerical
optimization, see Gill, Murray and Wright (1981).

1.3 Nonlinear Constraints

When the problem contains nonlinear constraints, MINOS uses a projected augmented Lagrangian
algorithm, based ou a method due to Robinson (1972); see Murtagh and Saunders (1982). MINOS
treats linear constraints and bounds specially, but the nonlinear constraints may not be satisfied
until an optimal point is reached. Thus, f{z) and its gradients (the Jacobian matrix J(z) =
‘Bf'(z)/8z;]) may need to be defined outside the region of interest.

In fact, the constraint functions will almost never be evaluated unless the linear constraints are
satisfied. Again, the starting point is an exception; it will satisfy its bounds, but f(z) and J(r)
will be evaluated at zo regardiess of the general linear and nonlinear coastrainis. This matter
must be borne in mind during the formulation of a nonlinear program.

The nature of the sofution process can be summarized as follows. A sequence of major
iterations is performed, each one requiring the solution of a linearly constrained subproblem.
The subproblems contain the original linear constraints and bounds, as welil as linearized versions
of the nonlinear constraints. This just means that f(z) in equation {2) is replaced by Lf, its
linear approximation at the current point, We shall write this approximation as

flzozn) = Hzx) + J(zallz — 24),
or more briefly -
/= fu+ Nfz ~), {5}

where x, is the eatimate of the nonlinear variablas at the start of the k-th major iteeation. The
subproblem to be solved takes the form

min}r:\i.ze F{z) + T2 + dTy — \I(f - f-) + ‘;'P(f - hT(r- f) (6)
subject to F+Ay=b, (1)

Agz + Ayy = by, (8)

t<() s)

The objective function (8) is called an augmented Lagrangian. The vector), is an estimate of),
the Lagrange multipliers for the nonlinear constraints. The scalar o is a penalty parameter, and
the term involving p is a modified quadratic penalty function.

Using {5) we see that the linear constraints (7) and (8) take the form

(i: i:)(:) * (: g) (:) = (Jmun fk)‘ (10}

MINOS uses the reduced-gradient algorithm to minimize (8) subject to (10), with the original
bounds on z and y, and suitable bounds on the slack variables 3, and s;. The Jacobian J; is
treated as a sparse matrix, the same as the matriceas A;.

Unfortunately, there is no guarantee that the algorithm just described will converge from
an arbitrary starting point. The concerned user can influence the likelthood of convergence in
geveral ways:

1. By specifying zy as carefully aa possible.
9. By including sensible upper and lower bounds on all variables.
3. By specifying a PENALTY PARAMETER p that is higher than the defauit vslue, if the problem
is suspected of being highly nonlinear.
4. By specifying a DANPING PARAMETER that is lower than the default value, again if the problem
is highly nonlinear.
In rare cases it may be aafe to use)\, == 0 and » = ¢ for all subproblems, by specifying LAGRANGIAN
= NO. However, convergence is much more likely with the default setting, LAGRANGIAN = YES. The
initial estimate of the Lagrange multipliers is then Mg = 0, but for later subproblems, X ia taken
to be the Lagrange multipliers associated with the (linearized) nonlinear constraints at the end
of the previcus major iteration.

The penalty parameter is iniliaily 100.0/m, by default, and it is reduced in stages for later
subproblems when it appears that the sequence {z, i) is converging. In many cases it is safe
to specify p = 0 from the beginning, particularly if the problem is only mildly nonlinear. This
may improve the overall efficiency.

1.5 Restrictions 5

1.4 Problem Farmulation

In general, it 13 worthwhile expending considerable prior analysis to make the constraints com-
pletely linear if at all possible. Sometimes a simple transformation will suffice. For example, a
pipeline optimization problem has pressure drop constraints of the form

Kl Kz 9 2
PRI + 43814 +- S Pr-Py

where d; are the design variables {pipe diameters) and the other terms are conatant. These
constrainte are highly nonlinear, but by re-defining the decision variables to be z; = 1/d$814 we
can make the constraints linear. Even if the objective function becomes more nonlinear by such
a transfarmation (and this usually happens), the advantages of having linear constraints greatly
outweigh this.

Similarly, it is important not to move nonlinearities [rom the objective function into the
constraints. Thus, we would not replace minimise F(z) by

minimize z subjectto F(z)-z=0.

Secaling ia a very important matter during problem formulation. A general rule is to ezale
both the data and the variables to be as close to 1.0 as possible. In general we suggest the
range 1.0 to 10.0. When conflicts arise, one should sacrifice the objective function in favor of the
constraints. Real-world problems tend to have a natural sealing within each constraint, as long
as the variabies are expressed in consistent physical units. Hence it is often sufficient to apply
a gcale factor to each row. MINOS has an option to scale constraints and variables
automatieally.

Finally, upper and lower bounds on the variables (and on the constraints) are extremely
useful for confining the region over which optimiszation has to be performed. If sensible values
are known, they should always be used. They are also impaortant for avaiding singularities in the
problem functions. For salety when such singulsrities exist, the initial point o discussed above
should lie within the bounds.

1.5 Restrictions

MINOS is designed to find solutions that are locally optimal. The nonlinesr functions in a problem
must be smooth (i.e., their first derivatives must exist]. The functions need not be separable.
Integer restrictiona cannot be imposed directly.

A certain region is defined by the linear constraints in a problem and by the bounds on the
variables. If the nonlinear objective and constraint functions are convex within this region, any
optimal solution obtained will be a global optimum. Otherwise there may be several local optima,
and some of these may not be global. In such cases the chances of finding a global optimum are
usually increased by choosing a starting point that is “sufficiently close”, but there is no general
procedure for determining what “close” means, or for verifying that a given local optimum is
indeed global.

MINOS uses one large array of main storage for most of its workspace. The length of this
array may need to be adjusted to suit a parlicular problem, but otherwise the implementation
places no fixed limitation on the size of a problem or on its shape (many constraints and relatively
few variables, or vice versa). In general, the limiting factor will be the amount of main storage

available on a particular machine, and the amount of computation time that one’s budget can
stand.

Some a priori knowledge of a particular application will ususlly indicate whether the solution
procedure is likely to be efficient. An important quantity is m = my; + my, the total number
of general constraints in {2} and {3). We note that m < 100 is considered “small”, m == 1000
or 2000 i3 “medium”, and m 2> 5000 would be “large”. On machines that use 18-bit integers
(INTEGER*2 on [BM and DEC VAX systems), the normal implementation of MINOS requires that
m < 32787.

The amount of workspace required by MINOS is roughly 100m words, where one “word” is
the relevant storage unit for the floating-point arithmetic being used (REAL*8 on IBM and DEC
VAYX, REAL on Burroughs and most. CDC machines). On IBM and VAX systemas, this meana shout
800m bytes for workspace. A further 300K bytes, approximately, are needed for the program
itself, along with buffer space for several files.

Another important quantity is n == 5y + ng, the total number of variables in z and y. For
nonlinear problems, il my and n, are small compared to m and n, the total storage required
should not be much greater than just described. I n, is “large™ (say ny > 200), the amount of

storage required may or may not be substantial, depending on whether F(z) or f(z} are highly
nonlinear ot not.

In this context, the efficiency of MINOS depends on s, the number of superbasic variables,
Reeall that m + a variables lie between their upper and lower bounds, where # is sero for purely
linear problems. Wa know that & need never be larger than ny + 1. In practice, s is often very
much less than this upper limit.

In the quasi-Newton algarithm, the dense triangular matrix R has dimension s and requires
about fo’ words of storage. If it seems likely that s will be very large, some aggregation or
reformulation of the problem should be considered.

1.8 Filas

MINOS operates primarily within central memory, and is well suited to a virtual starage envicon-
ment. Certain disk files are accessed as {ollows.

Input fie Status Record Length {characters)
READ fie ses below

SPECS file required 80

MPS file required 81

BASIS files optional 80

Output file Status Record Length (characters)
PRINT ble required 120
SUMMARY file optional a0

BASIS files optional 8q
SOLUTION file optional 11t

Fixed-length, blocked records may be used in all cases, and the files are always accessed sequen-
tially. The logical record length must be at lcast that shown. For efficiency, the physical block
site ghould be several hundred characters in most cases,

1.7 Input Data Flow

7
Unit numbers for the READ, SPECS, PRINT files are defined at comnpile
time; typically they will be 5, 5, 6 , but they may depend on the installation. The remaining

unit numbers are specified at run time in the SPECS fle.

Unit numbers for the READ, PRINT and SUMMARY files are stored in the following COMMON
block:

COMMON /MAFILE/ IREAD,IPRINT, ISUMM

It may be convenient to reference these in the user subroutines FUNOBJ, FUNCON and MATMOD.

System Note: The READ file is not used explicitly by MINOS, but its unit number is used
to test if a file should be rewound. (Thus, input files are subject to a Fortran REWIND as long as
they are not the same as the READ file.) The PRINT file is used frequently. Other output files
are rewound if they are not the same as the PRINT file.

1.7 Input Data Flow

Somes or all of the following items are supplied by the user:

s Subroutine FINOB.I

¢ Subroutine FUNCON

w JQulivuline HATMOD

+ A SPECS file

o An MPS file

e A BASIS fle

» Data read by FUNCON on ita first entry
¢ Data read by FUNOBJ on its first entry
¢ Data read by FUNCON on its last entry
e Data read by FUNOBJ on its last entry

The order of the files and data is important if all are stored in the same input stream.

Subroutines FUNOBJ and FUNCON define the nonlinear objective and constraint functions
respectively (if any); they are not needed if the functions are purely linear and are defined in
the MPS file.

Subroutine MATMOD ia oceasionally nceded, for applications invelving a sequence of tlosely
related problems.

The SPECS Ble defines various run-time parameters (ITERATION LINIT, SAVE FREQUENCY,
etc.). Its file number is defined at compile time. It will normally be the first data set in the
system card input siream.

The MPS file specifiea names for the constraints and variables, and defines all the linear
constrainta and bounds. It may [ollow the SPECS file in the card input stream, but will oftea
reside in a file of ita own (as specified in the SPECS file). The data format is similar to that
used in commercial mathematical programming systems (hence the name). The format has been
generalized siightly for nonlinear problems.

If desired, a BASIS file may be loaded at the beginning of a run. This will normally have
been saved at Lhe end of an earlier run. Three kinds of basis file are available; they are used to
restart the solution of a problem that was interrupted, or to provide a good starting peint for
some slightly modified problem.

1.8 Multiple SPECS Files

One or more probiems may be processed during a run. The parameters for a particular problem
are delimited by BEGIN and END in the SPECS file. While scanning for the keyword BEGIN,
MINOS recugnizes the keywords SKIP and ENDRUN, Thus in the following example:

BEGIN CASE 1

END CASE 1
SKIP CASE 2

END CASE 2
BEGIN CASE 3

END CASE 3
ENDRUN
BEGIN CASE 4

END CASE 4
only the first and third problem will be processed.

1.9 Internal Modifications

A sequence of closely related problems may be specified within a single SPECS file, via the CYCLE
parameter; for example,

BEGIN CYCLING EXANPLE
CYCLE LIMIT 10

END EXAMPLE
indicates that up to 10 problems are to be processad. This is intended for cases whera the solution
of one problem Py is needed %o define the next problem Piia.

The actual method for defining the next problem in a eycle depends on the application.
Sometimes it ean be done by changing the output from the funetion subroutines FUNOBJ and/for
FUNCON. Alternatively, the user may provide a third subroutine MATNOD to perform some modifi-
cations to the problemn data. MATMOD is called by MINOS at the beginning of every cycle,

If necessary, the number of linear variables can be increased when a problem P is defined.
We think of this as adding new columns to Py. The new columns are not included in the MPS file,
and their sparsity pattern need not be known until P, has been solved. Instead, an appropriate
number of PHANTOM COLUMNS and PHANTOM ELEMENTS are defined in the SPECS file (to reserve

a pool of storage), and the user's subroutine MATMOD generates each new column by calling the
MINOS subroutine MATCOL.

2.1 Subroutine FUNOBJ 5

2. USER-WRITTEN SUBROUTINES

To solve a purely linear problem, only a SPECS file and an MPS file (and possibly a BASIS file)
need be supplied.

For nontinear problems, one must also provide some appropriate Forkran code. Nonlinearities
in the objective function are defined by subroutine FUNCBJ. Those in the constraints are defined
separately by subroutine FUNCON. On every entry except perhaps the last, these subroutines must
return appropriate function values F. Wherever possible, they should also return all gradient
components in the array G. Thia provides maximum reliability and corresponds to the default
setting, DERIVATIVE LEVEL = 3.

[n practice it is often convenient not to code gradients. MINGOS is able to estimate gradients
by finite differences, by making a call to FUNGBJ or FUNCON for each variable z; whose partial
derivatives need to be estimated. However, this reduces the reliability of the optimization
algorithms, and it can be very expensive if there are many such variables z.

As a compromise, MINOS sllows you to code as many gradieats as you like. This option is
Implemented as follows: just before a function routine iz called, sach elemant of the gradient array
G is initialized to a specific value. On exit, any element retaining that value must be eatimated
by finite differences.

Some rules of thumb follow:

1. For maximum simplicity and reliability, compute F and all components of G.

2. If not ali gradients are known, compute as many of them as you can. (It often happens that
some of them are constant or even zero.)

3. Il some gradients are known (but not all), it may be convenient to compute them each time
the function routines are calied, even though they will bo ignored if KODE = 0.

4. 1f the known gradients are expensive to compute, use the parameter MODE to avoid computing
them on certain entries.

5, While the function routines are being developed, use the YERIFY parameter to check the
computation of any gradient elements that are supposedly known.

2.1 Subroutine FUNOBJ

This subroutine is provided by the user to calculate the objective function F(z) and as much of
its gradient g(z) as possible. {It is not necded if the objective function is entirely lincar.)

Specification:
SUBROUTINE FUNDRI{ MODE, W, ¥X. P, &, NSTATE. NPROB. Z. NWCORE)
IMPLICIT REAL»*8 (A-H, 0-2)
DIMENSION X(N), G(N), Z({NWCORE)

{The IMPLICIT statement sheuld not be used on machines for which single-precision floating-
point is adequate; e.g., Burroughs and CDC.)

Q. Uner wiricten Subrvatince

Paratneters:

MODE

X{%)

G{*}

NSTATE

yPRAB

Z(*)

NWCORE

(Input) This parameter can be ignored if DERIVATIVE LEVEL = 1 or 3 {i.e., if all ele-
ments of G are computed). In this case, MODE will always have the value 2,

Otherwise. you must specily DERIVATIVE LEVEL = 0 or 2in the SPRCS file to indicate
\rat FUNOBJ will not compute all of ¢. MINQS will then call FUNOBJ sometimes with
MODE = 2 and sometimes with MODE = 0. You may test MODE to decide what to do:

[f MODE == 2, compute F and as many components of @ as possible.

1f MODE == 0, compute F but set ¢ only if you wish. {On return, the contents of G will
be ignored.j

(Output) If for some reason you wish to terminate solution of the current problem, set
HODE to a negative value, 2.2., —1.

(Input) The number of variables involved in F(z). These must be the first M variables
in the problem.

{Input) An array of dimension N containing the current values of the nonlinear variables
z.

(Output) The computed value of the objective function F(z).

(Output} The computed gradient vector g{z). In general, G(j} should be set to the
partial derivative 3F/@z; for aa many j as posaible (except perhaps il MODE = Q—see
above).

(Input) If NSTATE = 0, there is nothing special about the current call to FUNOBJ,

{f NSTATE = 1, MINOS is calling your subroutine for the first time. Some data may neced
to be input or computed and saved in local or COMMON storage. Note that if there are
nonlinear constraints, the first call to FUNCON will occur before the first call to FUNGBJ.
If NSTATE > 2, MINOS is calling your subroutine for the last time. You may wish
to perform some additional computation on the final solution. (If CYCLE LIMIT is
specified, this call oceurs at the end of each cycle.} Note again that if there are nonlinear
constraints, the last call to FUNCON will occur before the last call to FUNOBJ,

In general, the last call is made with NSTATE = 2 + IERR, wherc IERR indicates the
status of the final solution. In particular, if NSTATE = £, the current X is opéimal; if
NSTATE == 3, the problem appears to be infeasible; if NSTATE = 4, the problem appears
te be unbounded; and if NSTATE = 5, the iterations limit was reached. In some cases,
the solution may be nearfy optimal if STATE == 11; this value occurs if the linesearch
procedure was unable to find an improved point,

If the nonlinear functions are expensive to evaluate, it may be desirable to do nothing
on the last cail, by inciuding a staterment of the form IF (NSTATE .GE. 2) RETURN
at the start of the subroutine.

(lnput) An integer that can be set by a card of the form PROBLEM NUMBER n in the
SPECS file.

(Input) The primary work array used by MINQS. In certain applications it may be
desirable to access parts of this array, using various COMMON blocks to pinpoint the
required locations. (For example, the dual variables are stored in Z(LPI) onward, where
LPI is the first integer in the COMMON block MSLOC.) Otherwise, Z and NWCORE can be
iznored.

(Input) The dimension of 2.

2.2 FUNCON it

2.2 Subroutine FUNCON

This subroutine is provided by the user to compute the nonlinear constraint furctions f(z} and
as many of their gradients as possible. (It is not needed if the constraints are entirely linear.)
Note that the gradients of the vector f{z) define the Jacobian matrix J{z). The j-th column of
J(z) is the vector 9f /9z;.

FUNCON may be coded in two different ways, depending on the method used for storing the
Jacobian, as specified in the SPECS file.

| JACOBIAN = DENSE |

Specification:

SUBROUTINE FUNCON(MODE, M, N, WJAC, X, F, G, NSTATE, NPROB, Z, NWCORE)
IMPLICIT REAL+8(A-K,0-2Z)
DIMENSION XCN)Y, FCMY, G(M.N), Z{(NWCORE)

Parametera:

MODE (Input) This parameter can be ignored if DERIVATIVE LEVEL = 2 or 3 (i.e,, if all ele-
ments of G are computed). In this case, MODE will always have the value 2.

Otherwise, you must specify DERIVATIVE LEVEL = O or 1 in the SPECS file to indicate
that FUNCON will not compute all of G. You may then test MODE to decide what to do:

If NODE = 2, compute F and as many components of G as possible.

If NODE == 0, compute F but set G only if you wish. (On return, the contents of G will
be ignored.}

(Output) If for some reason you wish to terminate solution of the current problem, set
MODE to a negative value, e.g., —1.

N (Input) The number of nonlinear constraints {not counting the objective function). .
These must be the first M constraints in the problem.

N {Input) The number of variables involved in f(z). These must be the first N variables
in the problem.

NJAC {Input) The value u»N,

X(») (Input) An array of dimension N containing the current values of the nonlinear variables
r.

F(%) (Output) The computed values of the functions in the constraint vector f(z).

G(+,+) (Output) The computed Jacobian matrix J(z). The j-th column of J{z) should be
stored in the j-th column of the 2-dimensional artay G (except perhaps if MODE = 0—
sec above). Equivalently, the gradient of the i-th constraint should be stored in the i-th
row of G.

The other parameters arc the same as for subroutine FUNOBJ.

12 2. Uscr-writtcn Subroutinea

| JACOBIAN = SPARSE]

Specification:

SUBRGUTINE FUNCON{ MODE, M, N, NJAC, X, F, G, NSTATE, NPROB, Z, NWCORE)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION X(N), F(M), G(NJAC), Z(NWCORE)

This is the same as for JACOBIAN = DENSE, except for the declaration of G{NJAC).

Parameters:

NJAC {Input} The number of nonzero elements in the Jacobian matrix J(z). This is exactiy
the number of entries in the MPS file that referred to nonlinear rows and nonlincar

Jacobian columns (the fiest ¥ rows in the ROWS section and the first N columns in the
COLUMNS sectlon).

Usually XJAC will be less than Ws¥. The actual value of NJAC may not be of any use
when coding FUNCON, but in all cases, any expression involving G (i) should have the
subscript ! between 1 and NJAC.

G(*) {Qutput) The computed elements of the Jacobian matrix (except perhaps if MODE = 0—
see previoua page). These elementa must be stored into G in exactly the same positions
as implied by the MPS file. There is no internal check for consistency (except indirectly
via the VERIFY parameter}, so great care is essential.

The other parameters are the same as for JACOBIAN = DENSE.

2.3 Constant Jacobian Elements

It all constraint gradients (§acobian elemnents) are known {DERIVATIVE LEVEL = 2 or 3), any
constant elements may be specified in the MPS file if desired. An element of G that is not
computed in FUNCON will retain the value implied by the MPS file. (The value is taken to be zera
il not given explicitly in the MPS file.}

This feature is useful when JACOBIAN = DENSE and many Jacobian clements are identically
zero. Such clements need not be specified in the MPS (e, nor set in FUNCON.

Note that constant nonsero clemcats do alleet #. Thus, il J;y is defined in the MPS file and
is constant, the array element G (¢,) need not be set in FUKCON, but the value G({,5)*X(;} must
be added to F(i}.

When JACOBIAN = SPARSE, constant Jacobian clements will normally not be listed in the
MPS file unless they are nonzero. If the correct value is enteted in the MPS file, the eorresponding
element G({) need not be reassigned, but a term of the form G (I)*X(;) must be added to one of
the elements of F. [This featurc allows a matrix generator to output constant data to tha MPS
file; FUNCON does not need to know thab data at compile time, bul can use it at run time to
compute the clements of F.)

Remecmber, if DERIVATIVE LEVEL < 2, unassigned elementa of G are not treated as conatant;
they are estimated by finite differences, at significant cxpense.

2.4 Subroutine matmod 13

2.4 SUBROUTINE MATMOD

For stand-alone MINOS, matmod allows you to define a sequence of related problems and
have them solved one by one. It is used in conjunction with the Cycle and Phantom options.
If the Cycle limit = . (the default), matmod is never called. If Cycle limit > 1, matmod
is called before the ariginal problem is solved {cycle 0}, and aiso after each problem is solved
{cycle L, 2,3....).

Within matmod you might alter some bounds on the variables or revise some of the
constraint coefficients. You may also communicate with subroutines funobj and funcon to
alter their behavior (e.g., by setting variables in your own common blocks). Finally, matmod
may specify whether a Cold. Yarm or Hot start should be used when MINOS starts soiving
the new problem.

Specification:

subroutine matmod(ncycle, nprob, finish,

$ m, n, nb, ne, nka, ns, nscl, nname,
$ a, ha, ka, bl, bu,
$ ascale, hs, namel, name2,
$ x, pi, re, z, nwcore)
implicit double precision (a-h,o-2)
integer ncycle, npreob,
$ m, n, nb, he, nka, ns, nscl, nnamg, nwcore
logical finish
integer=4 ha(ne), hs{nb)
integer ka(nka), namel(nname), name2{nname)
double precision a(ne), ascale{nscl), bl(nb), bul(mb),
$ x(nb), pi{m), rc(nb), z(nwcora)
On entry:
ncycle says how many problems have been solved.
If ncycle = 0, matmod is being called for the first time. MINOS has read the
MPS file, but the problem has not yet been scaled or solved. If a BASIS file
wag specified, it has been read and ha is defined. Otherwise, Crash has not yet
been called and hs does not define a basis.
This entry allows matmod to initialize problem-dependent quantities. To do
nothing before the first problem is solved. put “if (ncycle .eq. C)} return”
at the beginning of matmed.
nprob is the Problem number specified in the SPECS file.
finish is .false.

m, n, nb, na are the problem dimensions m, 1, nb = n + m, ne (see Appendix B).

14 Chapter 2. User-written subroutines

nka is n + 1 (used to dimension ka).
ns is the number of superbasic variables.
nscl says if the problems are being scaled prior to each solve. Ifnscl = 1. scaling has

not been specified. Otherwise, nacl = nb and ascale contains the scales used
for the problem just finished (assuming ncycle > 0). However, the problem
itself has been unscaled.

nname is normally the same as nb, assuming MINOS read an MPS file. If matmod is

for some reason being used with minoss, nname is the same as the minoss
parameter: it may be nb or 1, depending on whether names exist.

a(#*), ha(*), ka(*) contain the constraint matrix (see Appendix B).

b1(*), bu(*) are the lower and upper bounds on all column and slack variables {z, $).
ascale(*) contains scale factors for columns and rows (if ncycle > 0 and nscl > 1).
ha(«) is the state vector for all variables.. See Appendix B.

namel(+), name2(*) contain the first and second halves of the names of the columns and
rows in a4 format. For example, if the 9th variable were named ’Capital ?,
we would have namei(9) = 'Capi’ and name2(9) = 'tal .

x(*) contains (unscaled) values for all variables (i, s).

pi(x) contains the values of the dual variables #. The first m; components are current
estimates of A, the Lagrange multipliers for the nonlinear constraints. Good
values for A can sometimes assist convergence of the projected Lagrangian
algorithm. They may be provided to MINOS by the MPS file, but it may be

more convenient to define them in matmod on the first entry (ncycle = 0).

rc(») contains reduced costs for the variables and slacks (z,s), as printed in the
COLUMNS and ROWS sections of the solution.

z(nwcorae) is the primary work array used by MINOS. As in funaobj or funcon, it may be
desirable to access parts of this array via common blocks.

On exit:

Set finigh = .true. if yon wish the cycles to be terminated; e.g., if some convergence
criterion has been satisfied. The following common blocks may be useful:

double precision cnvtol

common fcyclem/ cnvtol, jnev,materr,maxcy,nephnt,nphant, nprint
logical gotbas,gotfac,gothes,gotscl

common /eyclel/ gotbas,gotfac,gothes,gotscl

Cycle tcolerance may be used to specify a numerical value for cnvtol. The four logical
variables may be set 10 .true. to request various Warm or Hot starts (see Page 121).

2.6 Mutrix Data Structure 15

2.5 Subroutine MATCOL

[f PHANTCM COLUMNS ¢ and PHANTOM ELEMENTS e are defined in the SPECS file (along with CYCLE
LIXIT &), this subroutine may be called by MATHMOD up to ¢ times throughout cycies 2 through &.
The aim is to turn at most ¢ “phantom columns” into normal columns containing a total of at
most ¢ nonzero elements. MATMOD must provide an array COL(*) and a zero tolcrance ZTOL for
each call. The significant elements of COL will be packed into the matrix data structure, to form
a new column. The associated variable will be given the default LOWER and UPPER bounds, and a
scale factor of 1.0,

Specification:
SUBROUTINE MATCOL(i, N, NB, NE, NKA,
* A. HA, KA, BL. BU, COL, ZTOL)
IMPLICIT REAL#8{A-H,0-2)
INTEGER=2 BA(NE)
INTEGER KA (NKA)
DIKENSION A(NE), BL(NB}, BU(NB), COLQW)
Parameters:
't {Input) The length of the array COL. Usuaily this willi be m, the number of rows in the

constraint matrix, [n general, it may be anywhere in the range L < ¥ < m, il the new
column is known to be zero beyond position K.

COL(*) {Input} The dense vector that is to become a new matrix column.

ZToL (Input) A zero tolerance for deleting negligible elements from COL when it is packed
into A and HA. On most machines, a reasonable value ia ZTOL = 1,0E-8.

The other parameters come directly from MATMOD. For further details, see the CYCLE options in
section 3.3, and the exampie in section 8.5.

2.6 Matrix Data Structure

In the MINOS source code, the constraint matrix A is stored column-wise in sparse format in the
arrays A, HA, KA, as defined in the specifications of subroutine MATMOD {section 2.4). The matrix
I associated with the slack variables is represented implicitly. If the objective function contains
linear terms ¢Tz + dTy, then (eT d7) is included as the I0BJ-th row of A (see the COMMON block
MSLOBJ below).

Il there are nonlinear constraints, the top lefi-hand corner of A is loaded with the curront
Jacobian matrix at the start of each major iteration.

The following COMMON blocks contain dimensions and other items reiating to the storage of
4.

COMMON JM3LEN / M N ,NB , NSCL
¥ m, the number of rows in A, including the linear objective row (il any).

n, the number of columns in A, possibly including ¢ “phantom columna”.
NB n + m = N+N, the total number of variables in the problem, including the slacks.
NSCL Either 8B or 1, depending on whether SCALE has been specified or not.

18 2. User-written Subroutines

COMMON JU2MAPA/ NE . NKA LA JLHA LKA
NE The number of nonzero rlements in A, possibly including ¢ “phantom elements”,
NKA n+ 1 = N+1, the number of pointers in the array KA.
LA The address of A{*) in the work array Z(»).
LHA The address of HA{*) in the work array Z(»).
LKA The addresa of KA(*) in the work array Z(»).
COMMON JMELEN / MAXR ,MAXS MBS NN ,NNO . NR NX

MAXR The HESSIAN DIMENSION.
HAXS The SUPERBASICS LIMIT.

MBS M+MAXS, the maximum number of basic and supcrbasic variables.

NN ny; = max{NNOBJ, NNJAC}, the number of HONLINEAR VARIABLES.

NKO max{1, KN}.

NR The dimension of the array R that is used to approximate the reduced Hessian, R.
NX max{MBS, NN}.

COMMON /MSLOBJ/ SINF ,WTOBJ ,MINIMZ,.NINF ,IOBJ
SINF The current sum of infeasibilities.
WTOBJ The scalar w used in the composite objective technique.
MINIMZ +1 if the objective ia to be minimized; —1 if it is to be maximized.
NINF The current number of infeasibilitics.

I0BJ The row number for the linear objective. (If I0BJ is zero, there is no such row.)

COMMON /MTLEN / FOBJ ,FOBJ2 ,NNOBJ ,NNOBJO
FOBJ The current value of the function value F returned by FUNOBJ.
FOBJ2 A temporary vaiue of FOBJ.
NKOBJ nj, the number of NONLINEAR OBJECTIVE VARIABLES.
NNOBJO max{t,NNOBJ}.

COMMON JMBLEN / NJAC ,NNCON ,NNCONO,NNJAC
NJAC The number of elements in the Jacobian.
NNCON my, the number of NONLINEAR CONSTRAINTS.
NNCONO max{1, NKCON}.
NNJAC n{, the number of NONLINEAR JACOBIAN VARIABLES.

3.1 SPECS [ite Format L7

3. THE SPECS FILE

‘The SPECS file sets various run-time parameters that deseribe the nature of the problem being
solved and the manner in which a solution is to be obtained. The file consists of a sequence of
card images, each of which contains a keyword and certain associaled values,

The first keyword is BEGIN and the last keyword is END. I the problem could be solved
using default values for all parameters, the SPECS file could consist of just those two keywords
{on separate cards). Normally, however, at least some of the parameters must be specified; for
example, the number of nonlinear variables if there are any.

3.1 SPECS File Format

Each card in the SPECS file contains a sequence of items in free format {they may appear
anywhere in cofumna L to 72). The items are separated by spaces or cqual signa (* ' or ‘=),
Those selected from each card are:

1. The first word (the keyword}. Only the first 3 characters ace significant.

2. The second word (if any). Sometimes this ia the keyword's associated name vafue, an 8-
character name. More often it qualifies the keyword, and its first, 4 characters are significant.

3. The first number (if any). This may be an integer value or a real value; up fo 8 characters in
Fortran's I, F, E or D {ormat.

In the following examples the significant characters are underlined:

QBJECTIVE EROFIT
SQLUTION FILE 2

ROws -1r.]

RQW TOLERANCE ¢.0001
LOWER BOUND = =1.0
ALJ TOL 1.08-8

If the first character of an item is one of the foilowing numeric characters
12345867890+ -.

then the item is taken to be a number. The number may be from 1 to 8 contiguous numeric
characters, including an E or a D if need be. [t is terminated by a non-numeric character such as
a space.

(An exception is made [or the keywords OBJECTIVE, RHS, RANGE and BOUND, which specify
names to be extracted from the MPS file. For these keyworda the second item is taken lo be the
required name value even if it begins with a numeric character. Thus,

AIJ TOLERANCE .00001
OBJECTIVE . 00001
RH3 .. .2EQ01
BOUND +1000

are all allowed. However, nameas like OBJECTIVE = COST or RHS = DEMANDO2 will be more com-
mon.)

Blank cards and commenta rnay be used to improve readability. A comment begins with an
asterisk {**') and includes all subscquent characters on the same card; these are ignored. The ‘o’
may be the first non-blank character on the card, or the first non-blank after a space or an cqual
sign. For example:

18 3. The SPECS File

»

#« MFS flle parameters
A

ROWS 1000 = {or lesm)
COLUMNS 2000 * (ar lesa)
ELEMENTS 8000 * (or lesw)
OBJECTIVE = PROFITQ2 =#

Scanning terminates once a number has been recognized. An asterisk is therefore not essential

following a number:

{the 2nd N row)

WEIGHT ON OBJECTIVE = 10.0 DURING PHASE 1

3.2 SPECS File Checklist and Defaults

The following example SPECS file shows all valid keywords and their default vajues. The keywords
are grouped according to the function they perform.

Some of the default values depend on ¢, the relative precision of the machine being used. The
values given here correspond to double-precision arithmetic on IBM 360 and 370 systems and
their successors (€ = 2.22 X 10-1%), Similar values would apply to any machine having about L5

decimal digits of precision.

BEGIN checklist of SPECS file parameters and their default values

* Keywords for the MPS file

*

MINIMIZE

DBIECTIVE = ?
RHS = ?
RANGE = ?
BOUNDS = 4
ROWS 100
COLUMNS . 300
ELEMENTS (or COEFFICIENTS) 16500
AlJ TOLERANCE 1.0E-10
LOWER BOUND 0.0
UPPER BOUND 1.0E+20
MPS FILE !
LIST LIMIT o
ERROR MESSAGE LIMIT 10

*

% Keywords for the simplex method

*

CRASH GPTION 1
ITERATIONS LIMIT 300
FPARTIAL PRICE i
MULTIPLE PRICE 1
WEIGHT ON LINEAR OBJECTIVE 0.0

#* ¥ ¥ % #

{opposite of MAXIMIZE)

the first name encountered
the first name encountered
the first name encountered
the first name encountered

or 3*ROWS
or 5+COLUMNS

plus infinity

depends on installation
for printing MPS daia
during MPS input

all variables cligible for initial basis

or 3*ROWS + 10*NONLINEAR VARIABLES
or COLS/ (2+ROWS) if COLS is large
BEWARE - not like commercial LP

during phase 1

3.2 SPECS File Checklist and Defaully

14

SUMMARY FILE
SUMMARY FREQUENCY
L0G FREQUENCY
CHECK FREQUENCY
FACTORIZATION FREQUENCY
SAVE FREQUEKCY
SCALE

SOLUTION

-

» BASIS files

]

OLD BASIS FILE
NEW BASIS FILE
BACKUP BASIS FILE
INSERT FILE

PUNCH FILE

LOAD FILE

DUMP FILE

SCLUTION FILE
.

100

30
50
100
X0
YEs

OO0 000 O0O

* Convergence and stability tolerances

*

FEASIBILITY TULERANCE
DOPTIMALITY TOLERANCE

PIVOT TOLERANCE

LU FACTOR TOLERANGE

LU UPDATE TOLERANCE

»

= Parameters {or nonlinear problems
L]

NONLINEAR CONSTRAINTS
NOKLINEAR VARIABLES

NONLINEAR OBJECTIVE VARIABLES
NONLINEAR JACUEIAN VARIABLES
SUPERBASICE LIKIT®

HESSIAN DIMENSION

™

PROELEM NUMBER

DERIVATIVE LEVEL

VERIFY LEVEL

EMERGENCY VERIFY LEVEL

»

START OBJECTIVE CHECK AT COL
STOP OBJECTIVE CHECK AT COL
START CONSTRAINT CHECK AT COL
STOP CONSTRAINT CHECK AT COL

1.0B-0
1.0E~8&
3,.7E-11
10.0¢
10.90

[= B o« I

oo wo

& % & % & & ¥ # # # & & B ¥ ®x =

* * % w * W ®* * % * =«

“* 4 ® K

* # B

> 0 for oceasional cutput to terminal
iteration log on SUMMARY file
iteration log on PRINT file

numerical test on row residuals
refactorize the basis matrix

basis map

linear conatraints and variables

on PRINT file

input basis map

output basis map

ocutput basis map

input in industry format
output INSERT data

input names and values
output LOAD data

separate from printed solution

for satisfying bounds

for reduced gradienta

ek

limita size of multipliers in L
the same during updates

must be the exact number, my

muat be the exact number, ny

use il different from Jacobian variables
use if different fzom objective variables
or HESSIAN DIMENSION

or SUPERBASICS LIMIT

scts subroutine parameter NPROB
asgumes 3ll gradients are known
gives cheap check on gradients
cheap check before stopping

3. The SPECS File

LINESEARCH TOLERANCE
SUBSFACE TOLERANCE
FUNCTION PRECISION
DIFFERENCE INTERVAL

CENTRAL DIFFERENCE INTERVAL
x

Furiher parameters for nonlinear constraints

*

JACOBIAN

LAGRANGIAN

MAIOR ITERATIONS

MINOR ITERATIONS

PENALTY PARAMETER

DAMPING PARAMETER

2

COMPLETION

ROW TOLERANCE

RADIUS OF CONVERGENCE

PRINT LEVEL (JFLXB)

*

* Sequences ol related problems
»

CYCLE LINIT

CYCLE PRINT

CYCLE TOLERAMNCE

PHANTOM COLUMNS

PHANTOM ELEMENTS

»®

* Miscellaneous

»

DEBUG LEVEL

LINESEARCH DEBUG AFTER ITN
WORKSPACE (USER)

WORKSPACE (TOTAL)

* SUPPRESS PARAMETER LISTING
END of SPECS file checkliszt

DENSE
YES

20

40
100.0/1?'11
2.0

PARTIAL
1.CE-&
0.01
00001

OO0 K -
o

999999

.- &% & % = * % # # * * 4 # * = * x % * *

* ¥ % N

smaller for more accurate search
allects when to PRICE

€*8 {almost full accuracy)
(FUNCTION PRECISION)}
(FUNCTION PRECISION)?

may need to be larger if very nonlinear
affects step-size between subproblems

FULL il no nonlinear constraints
allowable noniinear constraint violation
for reducing the penalty parameter
J(zk), f{z&), Mk, zu, Basia statistics

depends on installation

3.3 SPECS File Definitiona 21

3.3 SPECS File Dafinitions

The following is an alphabetical list of recognized SPECS file keywords. A typical use of each
keyword is given, along with a definition of the quantities involved and comments on usage. In
many cases the value associated with a keyword is denoted by a letter such as &, and allowable
values for k are subsequently defined.

ALJ TOLERANCE t {default ¢ = 1.0E-10)
During input of the MPS file, matrix coefficients a;; will be ignored if |ay;| < t.

If a,; is a Jacobian element, it is not ignored. (Its position is recorded, and it will retain the
value ¢ if DERIVATIVE LEVEL = 2 or 3 and FUNCON does not reset the corresponding element of
G.)

If CYCLE LIMIT > 1 and a;; is to be changed from zero to a value greater than ¢ during a
later cycle, set ¢t = 0.0 to retain all entries in the MPS file.

BACKUP BAEIS FILE 3 (default k = 0}

This is intended as a safeguard against losing the results of a long run. Suppose that a HEW
BASIS FILE is being saved every 100 iterations, and that MINOS is about to save such a basis at
iteration 2000. 1L is conceivable that the run may time-out during the next few milliseconds (i.e.,
in the middle of the save), or the host computer could unexpectedly crash. In this case the basis
file will be corrupted and the run will have been essentially wasted.

To eliminate this risk, both a NEW BASIS FILE and a BACKUP BASIS FILE may be specified.
The following would be suitable for the sbove example:

OLD BASIS FILR 11 {or 0)
BACKUP BASIS FILE 1i
NEW BASIS FILE 12

SAVE FREQUENCY 100

The current basis will then be saved every 100 iterations, first on file 12 and then immediately
on file 11. If the run is interrupted at iteration 2000 during the save on file 12, there will still be
a useable basis on file 11 {corresponding to iteration 1900).

Note that a NEW BASIS will be saved at the end of 5 run if it terminates normally, but there
is no need for a further BACKUP BASIS. In the above example, if an optimum solution is found
at iteration 2050 {or if the iteration limit is 2050), the final basis on file 12 will correspond to
ileralion 2050, but the last basis saved on file 1} will be the one for iteration 2000,

BOUNDS BOUNDO1
‘This specifies the 8-character name of the bound set to be selected from the MPS file.

1. BNDS is a valid alternative keyword.

2. If BOUNDS is not speeified, or if the name is blank, the first bound set in the MPS file will be
sclected.

3. If the MPS Tile contains one or more bound sets but you do not want any of them to be used,
specify a dummy name such as BOUND = NORE.

22 3. The SPECS File

CENTRAL DIFFERENCE INTERVAL ho (default Ay = (FUNCTION PRECISIUN}”

When DERIVATIVE LEVEL < 3, the central-difference interval Az i3 used near an optimal solution
to obtain more accurate (but more expensive) estimates of gradients. Twice as many function
evaluations are required compared to lorward differencing. The interval used for the j-th variable

is hy = hg(l + |z,|). The resulting gradient estimates should be accurate to O(h?), unless the
funetions are badly scaled.

CHECK FREQUENCY k (default k = 30)

Every k-th iteration after the most recent basis factorisation, a numerical test is made to see if
the current solution z satisfies the general linear constraints {including any linearized nonlinear
conatraints, if any). If these are Az + s = 0 where s is the set of slack variables, the residual
vector r = Az -+ s is computed. If the largest component of is judged to be too large, the current
basis is refpetorized and the basic variables are recomputed to satisfy the general constraints more
accurately.

COEFFICIENTS 5000
See ELEMENTS.
COLUNNS n (default n = 3+ROWS)

This must specify an over-estimate of the number of columns in the constraint matrix (excluding
slack variables, but including any PHANTOM COLUMNS). If n proves to be too small, MINOS will
continue reading the MPS file to determine the true value of n, and an appropriate warning
message will be issued, If the MPS file number is the same as the system card reader, the problem
will then be terminated; otherwise the MPS file will be re-read.

COMPLETION PARTIAL (default)

COMPLETION FOLL

When Lhere are nonlinear constraints, this determines whether subproblems shouid be solved to
moderate accuracy {PARTIAL completion), or to full accuracy (FULL completion}. MINOS effects
the option by using two sets of convergence tolerances for the subproblems.

Use of partial completion may reduce the work during early major iterations, unless the MINCR
ITERATIONS limit ia active. The optimal set of basic and superbasic variables wiil probably be
determined for any given subproblem, but the reduced gradient may be larger than it would have
been with full completion. .

An automatic switch to full completion ocenrs when it appears that the sequence of major
iterations is converging. The switch is made when the nonlinear constraint crroris reduced below
100+(ROW TOLERANCE), the relative change in Mg is 0.1 or less, and the previous subproblem was
solved to optimality.

Full completion lends to give better Lagrange-multiplier estimatea. It may lead to fewer
major iterations, but may result in more minor itcrations.

CRASH option k (default k = 3)

If a basis file is not specified, a triangular basis will be selected from certain rows and columns of
the constraint matrix (A I). Free rows and variables are given priority. Slack columns (from I
are added where necessary. Please see Page 120 for further details.

3.3 SPECS File Definitions 23

CRASH tolarance t {default t = 0.1}

This tolerance allows CRASH to ignore certain “small” nonzeros in the constraint matrix while
searching for a triangular basis. For each column of A, if amay is the largest element in the column,
c:her nonzeros in that column are ignored if they are less than or equal to amax X ¢.

When 1 > 0.0, the basis obtajned by CRASH may not be strictly triangular. but it is likely
to be nonsingular and almost triangular. The intention is to obtain a starting basis with more
structural variables and fewer (arbitrary) slacks. A feasible solution may be reached sooner on
some problems.

CYCLE LINKIT
CYCLE PRINT

(default { == 1)
(defauit p = 1)
CYCLE TOLERANCE (defauit ¢ = 0.9}
FPHANTOM COLUMNS (default ¢ = 0)
PHANTOM ELEMENTS ¢ (defsult ¢ == 0)
These keywords refer to a lacility for constructing and solving a sequence of related problems, as
described in sections 1.9, 2.4 and 2.5. The COMMON block
COMMON /CYCLCM/ CMVTOL,JNEW, KATERR, MAXCY, NEPHNT, NPHANT , NPRINT
contains certain reievant variables.

1. ! == MAXCY is the maximum number of problems to be solved.

2. p = NPRINT controls the printing of intermediate solutions. At most, the last p solutions will
be output.

3. ¢ = CNVTOL is a real aumnber for possible use in a user-specified convergence test within
subroutine MATMOD.

4. ¢ = NPHANT is the number of columns that can be added Lo the constraint matrix beyond
those specified in the MPS file. Each column must be added by means of a call to subroutine
MATCOL. If an error occurs, MATCOL increments MATERR (which ia initially zero). Otherwise,
JNEV records the index of the new column.

5. ¢ == NEPHNT is the number of nonsero elements that are allocated to the “phantom columns”
beyond those specified in the MPS fle.

0o g "~

DAMPING PARAMETER - d (default d = 2.0)
This paramcler may assist convergence on problems that have highly nonlinear constraints, It is
intended to prevent large relative changes between subproblem solutions (zx, M) and (Zr41, Aet1)-
For example, the defauit value 2.0 prevents the relative change in either zj or Ay from exceeding
200 per cent. {t will not be active on weil-behaved problems.

The parameter is used to interpoiate between the solutions at the begiunins and end of each
major iteration. Thus, zx4; and Ay, sre changed to

Tk + 0‘(2*.,.[- 2*) and e + 0(}.*4.1 -)\k)

for some step-length ¢ < 1. (In the case of noniinear equations, this gives a damped Newton
method.)

*Now called Major damping parameter.

24 3. The SPECS File

1. This is a very crude control. If the sequence of major iterations does not appear to be
converging, one should first re-run the problem with a higher PERALTY PARAMETER p (say 10
or 100 times the default pj. (Skip this re-run in the case of nonlinear equations. There are
no degrees of freedom and the value of p is irrelevant.)

2. If the subproblem solutions continue to change violently, try reducing d to 0.2 or 0.1 (say).

3. For implementation reasons, the shortened step o applies to the nonlinear variables =, but
not to the linear variables y or the slack variables 8. This may reduce the efliciency of the
control.

DEBUG LEVEL d {defauit d = 0)
This causes various amounts of information to be cutput to the PRINT file.

k Meaning
0 No debug output.
2 (or more) Qutput from MSSETX showing the maximum residual after a row cheek.

40 Output from LUBRPC showing the position of the last nonzero in the transformed
incorning column.

50 Qutput from LUZFAC showing each pivot row and column and the dimensions of the
dense matrix involved in the associated elimination.

100 Output from M2BFAC and MBLOG listing the basic and superbasic variables and their
values at every iteration.

DERIVATIVE LEVEL d (default d = 3)

This specifies which nonlinear function gradients are known analytically and will be supplied to
MINOS by the user subroutines FUNOBJ and FUNCON.

d Meaning
3 All objective and constraint gradients are known.

2 All consiraint gradients are known, but some or all components of the objective gradient
are unknown.

1 The objective gradient is known, but some or all of the constraint gradients are un-
known.

0 Some components of the objective gradient are unknown and some of the constraint
gradients are unknown,

3.3 SPECS File Definitions 25

The value d = 3 should be used whenever possible. It is the most reliable and will usually be the
most efficient.

If ¢ = 0 or 2, MINOS will estimate the missing components of the objective gradient,
using finite differences. This may simplify the coding of subroutine FUNOBJ. [However, it could
increase the total run-time substantially (since a special call to FUNOBJ is required for each missing
element), and there is less assurance that an acceptable solution will be located. If the nonlinear

variables are not well scaled, it may be necessary to specily a nonstandard DIFFERENCE INTERVAL
(see below).

If d = 0 or 1, MINOS will estimate missing elements of the Jacobian. For each column of the
Jacobian, one call to FUNCON i3 needed to estimate all missing elements in that column, if any. If
JACOBIAN = SPARSE and the sparsity pattern of the Jacobian happens to be

L * »
? 7

* ?
* »

where » indicates known gradients and ? indicates unknown elements, MINOS will use one call
to FUNCON to estimate the missing element in column 2, and another cal! to estimate both missing
elements in column 3. No calls are needed for columns 1 and 4,

At times, central differences are used racher than forward differences. Twice as many calls
to FUNOBJ and FUNCON are then needed. (This is not under the user's control.)

Remember: when analytic derivatives are not provided, the attainable accuracy in locating
an optimal solution is usually less than when all gradienta are available. DERIVATIVE LEVEL 3 is
strongly recommended.

DIFFERENCE INTERVAL M (default A, = (FUNCTION PRECISION)})
This alters the interval hy that is used to estimate gradients by forward differences in the following
circumstances:

1. In the initial {“cheap”) phase of verifying the objective gradients.

2. For verifying the conatraint gradients.

3. For estimating missing objective gradients.

4. For eatimating missing Jacobian elements.
In the last three cases, a derivative with respect to z; is estimated by perturbing that component
of z to the value z4 4 k(1 + |z5|), and then evaluating F(z) or f(z) at the perturbed point. The
resulting gradient estimates should be accurate to O(h)) unless the functions are badly scaled.
Judicious aiteration of h; may sometimes lead to greater accuracy.

DUMP FILE ! {default f = 0}
If f > 0, the last solution obtained will be output to file f in the format described in section 5.3.
The file will usually have been output previously as a LOAD file.

ELEMENTS ¢ (default e = §+COLUMNS)
This must specify an over-estimate of the number of nonzero elements (coefficients a;;) in the
consiraint malrix, including all entries in a DENSE or SPARSE Jacobian, and all nonzeros in the
matrices A;, Az, A3. {{L should also include the number of PHANTOM ELEMENTS, if any.)

1. COEFFICIENTS is a valid alternative keyword.

2. If ¢ proves to be too small, MINOS continucs in the manner described under COLUMNNS.

26 3. The SPECS File

EMERGENCY VERIFY LEVEL
See VERIFY LEVEL.

ERROR MESSAGE LIMIT e (default e = 10)

This is the maximum number of etror messages to be printed for each type of error occurring
when the MPS fle is read. The default value is reasonable for early runs on a particular MPS
file. If the same file is used repeatedly, ¢ can be reduced to suppreas warning of non-fatal errora.

FACTORIZATION FREQUENCY k {default & = 50)
At mast k basis changes will occur between factorizations of the basis matrix.

1. With linear programs, the basis factors are usually updated every iteration. The default k is
reasonable for typical problems. Higher valucs up to & = 100 (say} may be more efficient on
problems that are extremely sparse and well scaled.

2. When the objective function is nonlinear, fewer basis updates will occur as an optimum ia
appruached, The number of iterations belween basia lactorizations will therefore increase.
During these iterations a test is made regularly (according to the CHECK FREQUENCY) to ensura
that the general constraints are satisfied. If necessary the basis will be refactorized before
the limit of k¥ updates is reached.

3. When the constraints are nonlinear, the MINOR ITERATIONS limit wiil probably preempt k.

FEASIBILITY TOLERANCE t (default ¢ = 1.0B-8)

A feasible solution is one in which all variables satisfy their upper and lower bounds to within
the abeolute tolecance ¢. (This includes slack variahles. Hence, the general linear conatrainta are
also satisfied to within &.)

1. MINOS attempts to find a feasible point before aptimizing the objective function. If the sum
of infeasibilitics cannot be reduced to zero, the problem is declared INFEASIBLE, Let SINF
be the corresponding sum of infeasibilities. 1f SINF is quite small, it may be appropriate to
raise ¢ by a factor of 10 or 100. Otherwise, some error in the data should be suspected.

2. Note: il SINF is not small, there may be other points that have a significantiy smaller sum of
infeasibilities. MINOS does not attempt to find the solution that minimizes the sum.

3. If SCALE ia used, feasibility is defined in terms of the scaled problem (since it is then more
likely to be meaningful).

4. A nonlinear objective function F{z) will be evaluated only at feasible points. If there are
rogions where F(£) is undefined, every attempt should be made to eliminate these regions
from the problem. For example, if #(z) = \/Z} + log 23, it is essential to place lower bounds
on bolh variables. If FEASIBILITY TOLERANCE = 1078, the bounds z; > 1075 and z3 >
10—* might be appropriate. (The log singuiarity is more serious; in general, keep z as far
away [rom singularities as possible.)

5. Bounds should also be used to keep x more than ¢ away from singularities in f(z).

8. If there are any nonlinear constraints, each major iteration attempts to satisly their lineariza-
tion to within the tolcrance £. If this is not possible, the bounds on the nonlinear constraints
are relaxed temporarily {in scveral stages).

7. Feasibility with respect to the nonlinear constraints themsclves is measured against the ROW
TOLERANCE (not against t). The relevant test is made at the start of a major iteration.

3.3 SPECS File Definitioas 27

FUNCTION PRECISION €R (default ep = €'8)

The refative function precision eg is intended to be 2 measure of the relative aceuracy with which
the nonlinear functions can be computed, For example, il #(z) is computed as 1000.56789 lor
some relevant z and if the first 6 significant digits are known to be correct, the appropriate vaiue
for ¢g would be 1.0E-8,

{Ideally the functions F{z) or f'(z) should have magnitude of order 1. If ali functions are
substantially less than 1 in magnitude, €g should be the absolute precision. For example, if
F(z) = 1.23456789E-4 at some point and if the first 6 significant digits are known tc be correct,
the appropriate value for ep would be 1.0E-10.)

1. The default value of e is appropriate [or simple analytic fuactions.

9. In some cases the function values will be the result of extensive computation, possibly
involving an iterative procedure that can provide rather few digits of precision at reasonable
coat. Specifying an appropriate FUNCTION PRECISION may lead to savings, by allowing the
Yinesearch procedurs to terminate when the differcnce between function values along the
search direction becomes as small as the absolute error in the values.

HESSIAN DIMENSION r (default r = SUPERBASICS LINIT or 30)

This specifies that an r X r triangular matrix R is to be available [or use by the quasi-Newton
algarithm (to approximate the reduced Hessian matrix according to ZTHZ == RTR). Suppose
there are s superbasic variables at a particular iteration. '

1. It s < r, the first s columnsa of R will be used to approximate the reduced Hessian in the

normal manner. If there are no further changes to the set of superbasic variables, the rate
of convergence will ultimately be superlinear.

r=(* 5)

will be used to approximate the reduced Hessian, where R, is an r X r upper triangular
matrix and D is a diagonal matrix of order s — r. The rate of convergence will no longer be
superlinear.

2. [f ¢ > », & matrix of the form

3. The storage required is of order 2, which is subatantial if r is as large as 200 (say). In general,
r should be a slight over-estimate of the final number of superbasic variables, whenever storage
permits. It need not be larger than ny + 1, where ny is the number of nonlinear variablea.
For many problems it can be much smaller than n,.

4. If SUPERBASICS LIMIT s is specified, the default value of r is the same number, » {and
conversely). This is a safeguard to ensurc superlinear convergence whetever possible. [f
neither r nor a is specified, both default to the value 30,

INSERT FILE f {default f = 0)
If £ > 0, this references a file containing basis information in the format of section 5.2.

1. The file will usually have been output previously as a PUNCH file.
2. The fle will not be accessed if an OLD BASIS file is specified.

INVERT FREQUENCY
See FACTORIZATION FREQUENCY.

28 3. The SPECS File

ITERATIONS LIMIT k {(default & = 3+*ROWS + I10*NONLINEAR VARS)
This is the maximum aumber of minor iterations allowed (i.e., iterations of the simplex method
or the reduced-gradient algorithm).

L. ITNS is an alternative keyword.

[3~]

. k=0 is valid. Both feasibility and optimality are checked.
3. If CYCLE LIMIT > 1, the limit of & minor iterations applies to each cycle separately.

JACOBIAN DENSE (defauit]
JACOBIAN SPARSE

This determines the manner in which the constraint gradients are evaluated and stored. It affcets
the MPS file and subroutine FUNCON.

1. The DENSE option is convenient if there are not many nonlinear constraints or variables., It
requires storage for three dense matrices of order my X n;.

2. The MPS file may then contain any number of Jacobian entries. Usually this means no entries
at all.

3. For efficiency, the SPARSE option is preferable in all nontrivial cases. (Beware— it must be
specifically requested.) The MPS file must then specify the position of all Jacobian elements
{that are not identically zero), and subroutine FUNCON must store the elements of the Jacobian
array G in exactly the same order.

4. In both cases, if DERIVATIVE LEVEL = 2 or 3 the MPS file may specify Jacobian elements
that are constant for all values of the nonlinear variables, The corresponding elements of G
need not be reset in FUNCON.

LAGRANGIAN YES (delauit)

LAGRANGIAN NO

This determines the form of the objective function used for the linearized subproblems. The

default value YES is highly recommended. The PENALTY PARAMETER value is then also relevant.
If NO is specified, subroutine FUNCON will be called only twice per major iteration. Hence

tilis option may be uselul if the nonlinear consiraint functiona are very expensive to evaluate.

[{owever, in general there is a great risk that convergence may not occur. (Note: FUNCON wiil be

called more olten to estimate J{z) if DERIVATIVE LEVEL < 2.)

LINESEARCH DEBUG AFTER ITERATLUNS (Uufauit ¢ — 999999)

This causes considerable information to be output by the linesearch procedures every iteration,
once iteration £ has been eompleted. 1ts principal purpose ia to assist the authors of the lincscarch
proccdures to determine if the procedures are functioning correctly. In some cases it may conlirm
that the [unction values are very “noisy”, or that Lhe gradients computed in FUNOBJ or FUNCON
are incorrect.

3.3 SPECS Tile Definitions 20

LINESEARCH TOLERANCE ¢ (default ¢t = 0.1)

For nonlinear problems, this controls the accuracy with which an optimum of the merit function
will be located along the direction of search each iteration.

1. ¢ must be a ;eal value in the range 0.0 < ¢ < 1.0,

2. The default value ¢ == 0.1 requests a moderately accurate search. It should be satisfactory
for many problems.

3. If the nonlinear functions are cheap to evaluate, a more accurate scarch may be apptopriate;
try + = 0.01 or £ = 0.001. The number of iterations should decresse, and this will reduce
total rua time i there are many linear or nonlincar constraints.

4. If the nonlinear functions are expensive to evaluate, a less accurate search may be appropriate.
If all gradients are known, try ¢ = 0.5 or perhaps ¢ = 0.9. (The number of iterations will
probably increase, but the total number of function evaluations may decrease enough to
compensate.)

5. If not all gradients are known, a reasenably accurate search remains appropriate. Each seacch
will require only 2-3 function values (typically), but many function calls wiil then be needed
to estimate missing gradients for the next iteration.

LIST LIMIT k (default k = 0}

This limits the number of lines of the MPS file to be listed on the PRINT file during input. The
header cards (NAME, ROWS, COLUMNS, RHS, RANGE, BOUNDS, ENDATA} and comment cards will always
be listed, along with their position in the file.

LOAD FILE ' ! (default f = 0}
if f > 0, this references a file containing basis information in the format of section 5.3.

l. The file will usually have been output previously as a DUNP file.
2. The file will not be accessed if an OLD BASIS file or an INSERT file is specified.

LOG FREQUENCY k {default & = 1)
One line of the iteration log will be printed every k-th minor iteration. A value such as k = 10
is.suggesated for those interested oaly in the final sclution.

LOWER BOQUND i (default I = 0.0)

Before the BOUNDS section of the MPS file is read, all structural variables are given the default
lower bound [. (Individual variables may subsequently have their lower bound altered by a
BOUND set in the MPS fle.)

1. LOWER BOUND = 1.0E-5 (say) is a useful method for bounding all variablea away from sin-
gularitics at zero. {Explicit bounds may also be nceessary in the MPS file.}

2. If all or most variables are to be FREE, use LOWER BOUND = -1, 0E+20 to specily “minus
infinity”. (The default upper bound is already 1.0E+20, which ia treated aa “plus infinity”)

10 2. The SPECS File

LU FACTOR TOLERANCE t (default ¢ = 10.0)
LU UPDATE TULERANCE ty {default ¢ = 10.0)
These tolerances affect the stability and sparsity of the basis factorization B = L{, during

refactorizatien and updates respectively. Bolh tolerances must satisly £; > 1.0, The matrix /. is
a product of matrices of the form
1
(ﬁ 1)

whete the multipliers 4 will satisfy ju] < 4.
I. The default values {; = 10.0 usually strike a good compromise between stability and sparsity.
2. For large and relatively dense problems, ¢, = 25.0 (say) may give a marked improvement in
sparsity without impairing stability to a serious degree.

3. For certain very special structures (e.g., band matrices) it may be neccssary to set ¢, in the
range 1.0 < ¢; < 2.0 to achieve stability.

MAJOR ITERATIONS k {default k = 20)
This is the maximum number of major iterations allowed. It is intended to guard against an
excessive number of linearizations of the constraints, since in some cases the sequence of major
iterations may not converge.

For preliminary runs on a new problem, a fairly low MAJOR ITERATIONS limit should be
specified {e.g., 10 or 20). See the advice given under PENALTY PARAMETER.

MAXIMIZE

MINIMIZE (default)

This specifiea the required direction of optimization. It applies to both linear and nonlinear terms
in the objective,

MINOR ITERATIONS k (default k = 40}

This is the maximum number of iterations allowed between successive linearizations of the non-
linear constraints. A moderate value (e.g., 10 < k < 50) prevents excessive effort being expended
on early major iterations, but allows later subproblems to be solved to completion.

In general it is unsafe to specify a value as small as & = 1 or 2. {Even when an optimal
solution has been reached, a few minor iterations may be needed for the corresponding subproblem
to be recognized as optimal.)

Note that an independent limit on total iterations should be specified by the ITERATIONS
keyword as usual. If the problem ia linenrly constrained, this is the only limit (i.e., the MINOR
ITERATIONS keyword is ignored).

WPE FILE J (defauit f = ?)
This is the file number for the MPS file. The default value is the system card reader IREAD, which
is often f = 5.

1. INPUT FILE is a valid alternative keyword.

2. Tor nontrivial problems it is usually best to store the MPS file separately from the SPISCS
file. If the ROWS, COLUMNS or ELEMENTS eslimates prove to be too low, MINOS will be able to
rewind the MPS file and try again.

3.3 SPECS File Definitions

MULTIPLE PRICE k (default k = 1)

Whenever a PRICE operation is performed. the k best nonbasic variables will be sclected for
admission to the superbasic set. {“Best” mcans the variables with largest rediced gradients of

appropriate sign. If partial pricing is in effect, up to k variables are selected from the current
partition of A and [.)

1. The default value £ = 1 is best for linear programs, since an optimal solution will have zero
superbasic variables,

2. Warning: il & > 1, MINOS will go into reduced-gradient mode even on purely linear probiems.
The subsequent iterations do not correspond to the very efficient suboptimization. (“minor
iterations”) carried out by standard linear programming systems using muitiple pricing.
(MINOS varies all superbasic variables simultaneously. However, its storage requirements
are esgentially independent of & on linear problems. Thus, k need not be limited to 5 or 6 as
it is in standard systems, which require storage for & dense vectors of dimension m.)

3. Oo large nonlinear problems it may be important to set & > 1, if the starting point does
not contain many superbasic variables. For example, if 2 problem has 3000 variables and 500
of themn are nonlinear, the optimal solution may well have 200 variables superbasic. If the
problem is solved in several runs, it may be beneficial to use & = 10 (say) for early runs,
until it seems that the number of superbasics has levetled off.

NE® BASIS FILE f {defauit f = 0)
If f > 0, a basis map will be saved on file f every k-th iteration, where & ia the SAVE FREQUENCY.

1. The first card of the file will contain the word PROCEEDING if the run is stiil in progress.

2. If f > 0, a basis map will also be saved at the end of a run, with some other word indicating
the final solution status.

NONLINEAR CONSTRAINTS my (default my = o}
NONLINEAR VARIABLES ny (default n, = 0}
NONLIKEAR OBJECTIVE VARIABLES = {default n} = ¢}
NONLINEAR JACOBIAN VARIABLES nf (default nf = 0)

These keywords define the parameters M and N in subroutines FUNOBJ and FUNCON. For example,
K in FUNCON will take the value my, if mqy > 0.

1. If the objective function and the conatraints involve the same set of nonlinear variables z,
then NONLINEAR VARIABLES n; is the simplest way to set N (o be the same value for both
subroutines,

2. Otherwise, the NONLINEAR OBJECTIVE and NONLINEAR JACOBIAN keywords should be used to
specify n| and nf separately.

3. T my = 0, the value n{ = 0 is assumed regardicss of n; or nl.

4, Remember thal the nonlinear constraints and variables must always be the first ones in the
problem. [t is usually best to place Jacobian variables belore objective variables, so that n{ <
n! (unless ny = 0). This affeets the way the function subroutines should be programmed,
and the order in which variables should be placcd in the COLUMNS section of the MPS file.

32 3. The SPECS File

OBJECTIVE CoST

This specifies the 8-character name of the type N row in the MPS file to be selected as the linear
part of the objective function (i.e., the objective function for linear programs}.

{. If OBJECTIVE is not specified, or if the name is blank, the first N row in the ROWS section
of the MPS file will be selected. (Warning: objective rows must be listed after nonlinear
conatraint rows in the ROWS section of the MPS file.)

2. 1If the ROWS section contains one or more N rows but you do not want any of them to be
used in the objective function, specify a dummy name. I the objective is defined cntirely by
subroutine FUNOBJ it may be helpful to specify OBJECTIVE = FUNOBJ. (However, don't expect
a different name to invoke a different subroutine!)

OLD BASIS FILE i {default f = 0)
It £ > 0, the starting point will be obtained from this file in the format of section 5.1.

1. The file will usually have been output previously as a NEW BASIS FILE.

2, The file will not be acccptable if the number of rows or columns in the problem hsa been

altered.

OPTIMALITY TOLERANCE t {default t = 1.0E-8)

This is used to judge the size of the reduced gradients d, = g; — wTa,;, where g; is the gradient
of the objective function corresponding to the j-th variable, a; is the associated column of the
constraint matrix {or Jacobian}, and r is the set of dual variables.

i. By construction, the reduced gradienta for basic variables are alwaya zero. Optimality will
be declared il the reduced gradients for nonbasic variables at their lower or upper bourds
satisly

diffisll 2~ or &iflix{i <k
respectively, and if
|di1/li=l] < ¢
for superbasic variables,

2. In the above tests, ||x|| is 3 measure of the size of the dual variables. [t is included to make
the teats independent of a scale factor on the objective lunction.

3. The quantity actually used is defined by

Yo

=]

=}l = max{s/v/m, 1},

(-]

0 that only large scale factors are ailowed for. If the objective is scaled down substantially,
the test for optimality reduces to comparing just d; against &.

3.3 5PECS File Definitions 13

FARTIAL PRICE P (default p =1 or ¢ {see below))
This parameter is recommended for large problems that have significantly more variables than

constraints. It reduces the work required for each “pricing” operation (when a nonbasic variable
is selected to become superbasic).

1. When p = 1, all columns of the constraint matrix (A 7) are searched.

2. Otherwiae, A and I are partitioned to give p roughly equal segments Aj, Ii (7 =1 w0 p).
If the previous pricing search was successful on A;_,, I, the next search begins on the
segments A;, [;. (All subscripts here are modulo p.) If a reduced gradient is found that
is larger than some dynamic tolerance, the variable with the largest such reduced gradient
{of appropriate sign) is selected to become superbasic. {Several may be selected il NULTIPLE
PRICE has been specified.] If nothing is found, the search continues on the next segments
Aj 4y, Iiy1, and so0 on,

3. The default value of pis 1 for moderate-sized problems, but may be greater than 1 otherwise.
A quantity
¢ = max{1000, 4+ROWS}

is defined. If COLUKNS > ¢ and PARTIAL PRICE has not been apecified, p will take the value
COLUMNG/2+ROWS}.

4. PARTIAL PRICE p is recommended for {ime-stage models having p time periods.

PENALTY PARAMETER 2 (default p = 100.0/m;)
This is the value of p in the modified augmented Lagrangian. It is used only when LAGRANGIAN
= YES.

For early runs on a problem with unknown characteristics, something like the default value
should be specified. If the peoblem is known to be highly nonlinear, specify a larger value, such
33 10 times the default. In general, a positive values of p may be necessary to enaure convergence,
even for convex programs.

On the other hand, i p is too large, the rate of convergence may be unnecessarily slow. If
the functions are not highly nonlinear or a good starting point is known, it will often be safe to
specify PENALTY PARAMETER 0.0.

If several related problems are to be solved, the lollowing strategy for setting the PENALTY
PARAMETER may be useful:

1. Initially, use a moderate value of p, such as the defauit, and a reasonably low ITERATIONS
and/or MAJOR ITERATIONS limit.

2. If successive major iterations appear to be terminating with radically different solutions, the
penaity parameter should be increasad. (See also the DAMPING PARAMETER.)

3. If there appears to be little progress between major iterations, the penaity parameter could
be reduced.

PHANTOM COLUMNS ¢ (default ¢ = 0)
PHANTOM ELEMENTS e {default e = 0}
See‘the CYCLE parameters.

M 3. The SPECS File

PIVOT TOLERANCE t (default t = e})
This allows the pivot tolerance to be altered if necessary. (The tolerance is used to prevent
columns entering the basis il they would cause the basis to become almost singular.) The default

value of ¢ is roughly 10~ '! for double precision on IBM systems, This should be satisfactory in
most circumstances,

PRINT LEVEL (JFLXB) p (default p = 00001)
This varies the amount of information that will be output to the printer file. It is independent
of the LOG FREQUENCY. Typical values are

PRINT LEVEL i
which gives normal output for linear and nonlinear problems, and
PRINT LEVEL i1

which in addition gives the vaiues of the nonlinear variables z, at the start of each major iteration,
for problems with nonlinear constraints,

In general, the value being specified is best thought of as a binary number of the form
PRINT LEVEL JFLXD

where each letter stands for a digit that is either 0 or 1. The quantities referred to are:

B BASIS statistics, i.e., information relating to the basis matrix whenever it is relactorized.

X T, the nonlinear variables involved in the objective function or the constrainta.

L Ak, the Lagrange-multiplier estimates for the nonlinear constraints. {Suppressed if the
option LAGRANGIAN = NO is specified, since Ay = 0 then.)

F f{zk), the values of the nonlinear constraint functions.

J J{zy), the Jacobian matrix.

To obtain output of any item, set the corresponding digit to 1, otherwise to 0.

If J=1, the Jacobian matrix will be output column-wise at the start of each major iteration.
Column j will be preceded by the value of the corresponding variable z; and a key to indicate
whether the variable is basic, superbasic or nonbasic. (Hence if J=1, there i3 no reason to specify
X=1 unless the objective contains more nonlinear variables than the Jacobian.) A typical line of
output is

3 1.250000D+01 BS 1 1.00000E+00 4 2.00000E+00

which would mean that 3 {s basic at value [2.5, and the third column of the Jacobian has
elements of 1.0 and 2.0 in rows L and 4.

PRINT LEVEL O may be used to suppress most output, including page ejects between major
iterations. {Error messages will not be suppresscd.) This print level shauld be used only for
production runs on well understood models. A high LOG FREQUENCY may also be appropriate for
such cases, e.g. 100 or 1000, (For convenience, LOG FREQUENCY 0 may be used as shorthand for
LOG FREQUENCY 99999.)

PROBLEM NUMBER n {default n =0}
For nonlinear problems, this assigns a value to the parameter NPROB in the user subroutines
FUNOBJ, FUNCON and MATMOD.

1.3 SPECS File Definitions a5

PUNCH FILE ! {default f = 0)
Il / > 0, the final solution obtained will be output to file f in the format described in section
5.2. For linear programs, this format is compatible with various commercial systems.

RADIUS OF CONVERGENCE r (dETault r= 0.01)

This determines when the penalty parameter p will be reduced (if initialized to a positive value).
Both the nonlinear constraint violation (see ROWERR below) and the relative change in consecu-
tive Lagrange multipler estimates must be less than r at the start of a major iteration before
p is reduced or set to zero. QOnce p is zero, the sequence of major iterations should converge
guadratically to an optimum.

RANGES RANGEQUL
This specifies the 8-characler name of the range set to be seiected from the MPS file,

1. RNGS is a valid alternative keyword.

2. If RANGES is nol specified, or if the name is blank, the first range set in the MPS file will be
selected,

3. If Lhe MPS fle contains one or more range sets but you do not want any of them to be used,
specifly 2 dummy name such as RANGES = MONE.

RHS RHSIDE3
This specifies the 8-character name of the righthand side to be selected from the MPS file.

1. If RHS is not specified, or if the name is blank, the first righthand side in the MPS file will be
selected.

2. If the MPS file contains one or more righthand sides but you do not want any of them to be
used, specify a duinmy name such as RHS = NONE.

ROWS m {default m = 100)
This must specily an over-estimate of the number of rows in the constraint matrix. It includes
the number of nonlinear constraints and the number of general linear constraints,

If m proves to be too small, MINOS continues in the manner described under COLUMNS.

ROW TOLERAKCE £ (default ¢, = 1.0E-8)
This specifies how accurately the nonlinear conatraints should be satisfied. {Both “ROW” and
“TOLE” ara signifieant on this data eard.) The default value of 1.0E-8 is often appropriate, since
the MPS file containa data to about that aceuraey.

Let ROWERR be defined as the maximum component of the residual vector f(z}+ A1y ~ by,
normalized by the size of the solution. Thus,

ROWERR = ||f{z) + A1y — b1||oo / XNORM,

where XNORM i3 a measure of the size of Lhe basic and superbasic variables. The solution (z,¥)
is regarded as acceptably feasible if ROWERR < e,.

If some of the problem functions are known to be of low aceuracy, a larger ROW TOLERANCE
may be appropriate.

K] 3. The SPECS File

SAVE FREQUENCY k (deflault k == 100)
If a NEW BASIS file has been specified, a basis map describing the current solution will be saved
on the appropriate file every k-th iteration. A BACKUP BASIS file will also be saved if specified.

SCALE NO (default}
SCALE OPTION Q

SCALE

SCALE YES

SCALE LINEAR VARIABLES

SCALE OPTION 1

SCALE NONLINEAR VARIABLES
SCALE ALL VARIABLES

SCALE OPTION 2
SCALE, PRINT
SCALE TOLERANCE t (default t = 0.9)

Three scale options are available, with equivalent definitions as shown. The default is: No scaling.
Otherwise, the constraints and variables are scaled by an iterative procedure that attempts to make
the matrix coefficients as close as possible to | (see Fourer, 1982). This will sometimes improve
the performance of the solution procedures. SCALE OPTION 1 scales only the linear constraints
and variabies.

If the constraints are linear, SCKLE CPTION 1 scales all rows of the constraint matrix A, but
only the columns associated with linear variables. SCALE OPTION 2 performs an additional scaling
that may be helpful if the solution z is large; it takes into account columns of (A I} that are
fixed or have positive lower bounds or negative upper bounds. SCALE OPTION 2 is suitable for
linear programs and for problems with nonlinear objectives.

If nonlinear constraints are present, SCALE OPTION O or 1 should generally be tried at first.
SCALE OPTION 2 gives scales that depend on the initial Jacobian, and should therefore be used
only if a good starting point is provided (by the IFITIAL bounds set or a basia file).

SCALE, PRINT causes the row-scales r(i) and column-scales c{j) to be printed. The scaled
matrix coefficients are &; = a;jc(j)/r(i), and the scaled bounds on the variables and slacks are '
I; =1;/el§). T; = u;fc(j). where e(7}mr(i =n)if j > n.

All forms except SCALE OPTION may specify a tolerance ¢ where 0.0 < t < 1.0 (for example:
SCALE, PRINT, TOLERANCE = 0.99). Raising ¢ from 0.9 to 0.99 (say) will probably increase the
number of scaling passes through A. At most 10 passes will be made.

[f a SCALE OPTION has not already been specified, SCALE PRINT or SCALE TDLERANCE both set
SCALE OPTION 1.

SOLUTION YES (default)

SOLUTION NQ

SOLUTION IF OPTIMAL. INFEASIBLE, or UNBOUMNDED

SOLUTION IF ERROR CONDITION

SOLUTION FILE / (default f =0)

The firat four options delermine whether the final solution obtained is to be output to the PRINT
file. The FILE option operates independeantiy; if / > 0, the final solution will be output to file f
(whether optimal or not).

3.3 SPECS Flle Definitions 37

1. For the YES, IF OPTIMAL, and IF ERRGR options, floating-point numbers are printed in F18.5
format, and “infinite” bounds are denoted by the word NONE.

2. For the FILE oplion, all numbers are printed in {PE18.8 format, including “infinite” bounds
which will have magnitude 1.000000E+20,

3. To see more significant digits in the printed solution, it will sometimes be useful to make f
refer to the system PRINT file,

START OBJECTIVE CHECK AT COLUMN & (default k= 1)
START CONSTRAINT CHECK AT CCLUMN k (default & == 1)
STOP OBJECTIVE CHECK AT COLUMNI/ (default { = n})
STOP CONSTRAINT CHECK AT COLUMN!{ (default { == n{}

These keywords may be used to abbreviate the verification of individual gradient elements
computed by subroutines FUNOBJ and FUNCON. For example:

1. I the first 100 objective gradients appeared to be correct in an earlier run, and if you have
just found a bug in FUNOBJ that ought to fix up the 101-th component, then you might as
well specily START OBJECTIVE CHECK AT COLUMM 101. Similarly for columns of the Jacobian
matrix.

2. If the first 100 variables oceur nonlineazly in the constraints, and the remaining variables are
nenlinear only in the objective, then FUNOBJ must set the firat 100 components of G(2) to
zero, but these hardly need to be verified. The above data card would again be appropriate.

These keywords are effective if VERIFY LEVEL > 0.

SUBSPACE TOLERANCE ‘ (default ¢ == 0.5)
This controls the extent to which optimization ia confined to the current set of basic and superbasic
variables (Phase 4 itecations), before one or more nonbasic variablea are ndded to the superbasic

set (Phase 3).
1. ¢ must be a resl pumber in the raage 0.0 < ¢ < 1.0, It is used as follows.

2. When a nonbasic variable z; is made superbasic, the resulting norm of the reduced-gradient
vector (for all superbasics) is recorded. Let this be ||2Tgo||. (In fact, the norm will be |d;),
the size of the reduced gradient for z,.}

3. Subscquent Phase 4 iterations will continue at least until the norm of tho reduced-gradient
vector satisfies [|Z7gil < ¢ X [12%00ll- (1Z75|l is the size of the largest reduced-gradicnt
component among the superbasic variables.)

4. A smaller value of ¢ is likely to increase the total number of iterations, but may reduce the
number of basis changes. A larger value such as ¢ == 0.9 may sometimes lead to improved
overall cfficiency, if the number of superbasic variables has to increase substantially between
the starting point and an optimal solution,

5. Other convergence tests on the change in the function being minimized and the change in
the variables may prolong Phase 4 itecations. This helps to make the overail performance
insensitive to larger values of &,

a8 3. The SPECS File

SUMMARY FILE f (default f =0)

SUMMARY FREQUENCY k (default k = 100)

If f > 0, abricf log will be cutput to file f, including one line of information every k-th iteration.
[n an interactive environment, it is uscful to direct thia output to the terminal, to allow a run to

be monitored on-line. (If something looks wrong, the run can be manually terminated.) Further
details are given in section 6.68.

SUPERBASICS LINIT s (default s = HESSIAN DIMENSION, 30, or 1)
This specifies “how nonlinear” you expect a problem to be.

1. Normally, & need not be greater than n, + I, where ny is the specified number of nonlinear
variables,

2. For many problems (that are not highly nonlinear), s may be considerably smaller than n;.
This will save storage if n is very large.

3. This parameter also sets the HESSIAN DIMENSION, unless the latter ia specified explicitly (and
conversely). If neither parameter is specified, both default to the value 30 {except il there
are no nonlinear variables, in which case both default to 1).

SUPPRESS PARAMETERS

Normally MINOS prints the SPECS file as it is being read, and then prints a complete list of the
available keywords and their final values. The SUPPRESS PARAMETERS option tells MINOS not to
print the full list. (Both “SUP” and “PARA” are significant.)

UNBOUNDED OBJECTIVE VALUE Friux (default Fpax == 1.0E+20)

UNBOUNDED STEP SIZE Omax (default amaxr = 1.0E+10)

These parameters are intended to detect unboundedness in nonlinear problems. (They may or
may not achieve that purpose!) During a linesearch of the form

min F{z + ap),
a

if |F| exceeds Fpqax of & exceeds amay, iterations are terminated with the exit message PROBLEN
IS UNBOUNDED (OR BADLY SCALED).

1. If singularities are present, unboundedness in F(z) may be manilested by a floating-point
overflow (during the evaluation of F(z + ap)), before the test against Fin,, can be made.

2. Unboundedness in z is best avoided by placing finite upper and lower bounds on the variablies.
(For convenience, this can be accomplished in the SPECS file; see the LOWER and UPPER BIUND
parameters.)

UPPER BOUND u {default u = 1.0E+20)
Before the BOUNDS section of the MPS file is read, all slructural variables are given the default

upper bound u. {[ndividual variablea may subsequently have their upper bound aitered by the
BOUNDS seciion in the MPS file.)

3.3 SPECS File Definitions 5

VERIFY LEVEL l (default ! = 0)
VERIFY NO
VERIFY LEVEL 0
VERIFY OBJECTIVE GRADIENTS

VERIFY LEVEL 1
VERIFY CONSTRAINT GRADIENTE

VERIFY LEVEL |
VERIFY

VERIFY YIg
VERIFY GRADIENTS

VERIFY LEVIEL 3

These keywords refer to finite-difference checks on the gradient siements computed by the user
subroutines FUNOSJ and FUNCON. [t is possible to specily VERIFY LEVELs 0-3 in several ways,
as indicated sbove. For example, the nonlinear objective gradients (if any) will be verified if
either VERIFY OBJEICTIVE or VERIFY LEVEL 1 is specified. Similarly, both the objective and
the constraint gradients will be verified if VERIFY YRS or VERIFY LEVEL 3 or just VERIFY s
specified.

If 0 £ I € 3, gradients will be verified at the starting point. If | = 0, only a “cheap” test
will be performed, requiring 3 calls to FUNGBJ or 2 calls to FUNCON. If 1 < [< 3, a more reliable
check will be made on individual gradient components, within the ranges specified by the START
and STOP keywords. A key of the form “OK™ or “BAD?” indicates whether or not each component
appears to be correct.

Gradient checking occurs before the problem is scaled and before the first basis is factorized.
{Hence, it occurs before the basic variables are reset to satisfy Az + s = 0.)

EMERGENCY gradient chacking {at the end of an abortive run) is no longer performed.

1. VERIFY LEVEL 3 should be specified whenever a new function routine is being developed.
2. Missing gradients are not checked; i.a., they result in no overhead.

3. The default action is to perform a cheap check on the gradients at the first leasible point.
Even on debugged function routines, the mcssage “GRADIENTS SEEN TO BE OK® will provide
certain comfort at nominal cxpense.

4. If necessary, checking can be suppressed by specifying VERIFY LEVIL -8,

40 J. The SPECS File

WEIGHT ON LINEAR OBJECTIVE w (default w = 0.0)

This keyword invokes the so-called composite objective technique, if the first solution obtained is
infeasible, and il linear terms for the objective function arc specified in the MPS file. While trying
to reduce the sum of infeasibilities, the mecthod also atiempts to optitnize the linear objective.

1. At each infeasible iteration, the objective function is defined to be
minimise ow(eTz) + (sum of infeasibilities),

where ¢ = 1 for MINIMIZE, o = —1 for MAXIMIZE, and ¢ is the linear objective row.

2. 1If an “optimal™ solution is reached while still infeasible, w is reduced by a factor of 10. This
heips to allow for the possibility that the initial w is too large. It also provides dynamic
allowance for the fact the sum of infeasibilities is tending towards zero.

3. The effect of w is disabled after 5 such reductions, or if a feasible solution is obtained.

WORKSPACE (USER) maxy {default maxw = 0)

WORKSPACE (TOTAL) naxz (default maxz == NWCORE)

These keywords define the limits of the region of storage that MINOS may use in solving the
current problem. The main work array is declared in the main program, along with its length,
by statements of the form

DOUBLE PRECISION Z(25000)
DATA NWCORE/ 25000/

where the actual length of Z must be specified at compile time. The values specified by the
WORKSPACE keywords are stored in
CUMMUN /MZHAPZ/ MAXY,NAXZ

and workspace may be shared according to the following rules:

1. Z€1) through Z (MAXW) is availabie to the user.

2. Z(MAXW+1) through Z(MAXZ) is available to MINOS, and should not be altered by the user.

3. Z(MAXZ+1) through Z (NWCORE) is unused {or avsilable to the user).

The arrays LEN and LOC are not used by MINOS.

The WORKSPACE parameters are most useful on machines with a virtual {paged) store. Some
systems will allow NWCORE to be set to a very large number (say 500000) with no overhead in
saving the resulting object code. At run time, when various problems of different size are to be
solved, it may be sensiblie to confine MINOS to a portion of Z to reduce paging activity slightly.
(However, MINOS accesses storage contiguously wherever possible, so the benefit may be slight.
In general it is far better to have too much storage than not enough.)

4.1 The NAME Card 41

4. THE MPS FILE

An MPS file is required for all problems to specify names for the variables and conatraints, and to
define the constraints themselves, In contrast to the relatively free format allowed in the SPECS
file, 2 very fixed format must be used for the MP'S file. {This means that each item of data must
appear in specific columns.)

Various “header cards” divide the MPS file into several sections as [ollows:

NAKE
ROWS

cér.mms

RAS

RJU:GES (optional)
BI-JUNDS (optional}
EI}DAIA

Each header card must begin in columa 1. The intervening eard images (indicated by “.” above)
all have the lollowing data format:

Columns 2.3 5-12 15-22 25-348 40-47 50-61
Contents Key Nameil Namel Valuel Name2 Value2

In addition, “comment” cards are allowed; these have an asterisk “*” in column 1 and any
characters in columns 2-22.

MPS format has become the industey standard. Files of this kind are recognised by all
commercial mathematical programming systems (including MPS/360, MPSX, MPSX/370 and
MPS [II on IBM systems; APEX 11T and IV on CDC machines; FMPS on Univac systems; TEMPO
on Burroughs systems). They may be created by hand, by your own special-purpose program, or
by various commercial “matrix generators”, such aa GAMMA, MAGEN and OMNI.

Beware that variations are inevitable in aimost any “standard” format. Some restrictions in

the format accepted by MINOS are listed later. Some cxtensions are also needed for nonlinear
problems.

4.1 The NAME Card
NAKE MODEL0O01 (for example)

This card contains the word NAME in columns 1-4, and a name for the problem in columns 15-22.
{The name may be from 1 to 8 characters of any kind, or it may be blank.} The name is used to
label the solution output, and it appeare on the first card of each basis file.

The NAME card is normally the first card in the MPS file, but it may be preceded or followed
by comment cards.

42 4, The MPS8 File

4.2 The ROWS Section

ROWS
E FUNO1
G FUND2 (for example)
L CAPITAL1
N COSsT

The general constraints are commonly referred to as rows. The ROWS section contains one card
for each constraint (i.e., for each row). Key defines what type the constraint is, and Namneg gives
the constraint an 8-character name. The various row-types are as follows:

Key Row-type

E =

¢ >

L <
N QObjective
N Free

(The 1-character Key may be in column 2 or column 3.)

Row-types E, G and L are easily understood in terms of a linear function a¥z and a right-hand
side . They would be used to specify coastraints of the form

s'z=f, az>8 ad az<PB

respectively. (Nonsero clements of the row-vector a will appear in appropriate parts of the
COLUMNS section, and il 3 is nonzero it will appear in the RHS section.)

Row-type N stands for “Not binding”, also known as “Free”. It is used to define the objective
row, and also to prevent a constraint from actually being a constraint. {Note that —oo < a7z <
400 i3 not really a constraint at all. Type N rows are implemented by giving them infinite bounds
of this kind.}

The objective row is a [ree row that specifies the vectors ¢ and d in the objective lunction
F(z) + cTz + d7y. It is taken to be the first free row, unless some other free row is specificd by
the OBJECTIVE keyword in the SPECS file.

The ROWS section need not contain any free rows if ¢ = d = 0. If there are some nonlincac
objective variables, the objective function will then be F(z} as defined by subroutine FUNOBJ.
Otherwise, no abjective function exists and MINOS will terminate at the first point that satisfics
the constraints,

If the ROWS section does contain free rows but none of them is inlended to be an objective
row, then some dummy name such as OBJECTIVE = NONE should be specified in the SPECS file
o prevent the firat {ree row {rom being sclected. (If the objective function is F{z} with no linear
terms, GBJECTIVE = FUNOBJ would be a mnemonic reminder.)

Row-names for Nonlinear Constraints

The names of nonlinear constraints must be listed first in the ROWS soction, and their order
must be consistent with the computation of the areay F(+) in subroutine FUNCON.

In particular, the objective row (il any) must appear alter the list of nonlincar row names.
For simplicity we suggest that potential objective rows be placed last:

4,3 The COLUMNS Section 43

ROWS
G FUNO1 nonlinear constraints first
G FUNO2
E LINOL now linear constraints
E LINO2
N COSTOt objective rows last

N <0sTo2

4.3 The COLUMNS Section

1 6.....12 15....22 25........38 40....47 B5O0........ 61 (flelds)
COLUMNS
X0t FuNos 1.0 ROWO9 -3.0
x01 ROWOS 2.8 ROW12 1.123456 (example)
X01 ROWO3 -t1.111111
xo02 FUNO2 1.0
X032 COSTO1 5.0

For each variable z; (say), the COLUMNS section defines a name for z; and lists the nonzero
entries g;; in the corresponding column of the constraint matrix, The nonszeros for the first
column muat he grouped together before those far the second column, and so on. If a eolumn has
several nonzeros, it does not matter what order they appear in {as long as they ali appear before
the next column). -

In general, Key is blank (except for comments), Name8 is the column name, and Namet,
Valuel give a row name and value for some coefficient in that column. If there is another row
name and value for the same column, they may appear as Name2, Valuc2 on the same card, or
they may ba an the next card.

If either Name! or Name? is blank, the corresponding value is ignared.

Values are read by MINOS using Fortran format E12.0. This allows values lo be entered
in several forms; for sxample, 1.2345878, 1.2346878E+0, 123 _4EA878E-2 and 12345878E-07 all
represent the same number. [t is usually best to include an explicit decimal point,

Beware that spaces within the value fields are the same as 0's (on most computer systems).
In particular, this means that il an exponent like E-2 appears then it must be right-justified in
the value field. For example, the two values

1.23g-02

1.23E-2
are not the same if the decimal point is in column 30 in both cases. The second value is actually
1.23E-20.

In the example above, the variable called X01 has 5 nonzero coefficients in the constraints
named FUNOS, ROWO®, ROW08, ROW12 and ROWO3. The row names and values may be in an arbitrary

order, but thoy must all appear before the entries for column X02.,

There is no need to specily columns for the slack variables; they are incorporated implicitly.

14 4. The MPS File

Noniinear Variables

Nonlinear variables must appear first in the COLUMNS section, ordered in a manner that is
consistent with the areay X(#) in the user subroutines FUNOBJ and/or FUNCON. [n the example
minimize (z+y+ z) + 3z + 5w
subject to 2 +y° + z =3
 + Uk + w=4
iz + 4y 20
z 20, w2>0
we have three nonlinear objective variables (z, y, z), two nonlinear Jacobian variables (%, ¥); one
linear variable w, two nonlinear constraints, one linear conatraint, and some simpie bounds. The

nonlinear constraints and variables should always be ordered in a similar way, at the top left-hand
corner of the constraint matrix. The latter is therefore of the form

A= (J'h Al)
Ay Ay
where Ji is the Jacobian matrix. The variables associated with Ji and Az must appeat first in
the COLUMNS section, and their order must be consistent with the array X(*) in subroutine
FUNCON. Simiiarly, entries belonging to J. must appear in an order that is conasistent with the
array G{*} in subroutine FUNCON.

For coavenience, lat the first »; columns of the constraint matrix be

(J,,) - (51 Ju ~v.’f~u)

Ag - G133 +..0y, !

where j; is the first column of J; and g, is the first column of A;. The cocfficients of j; and
a1 must appeat befere the cocficients of j; and ag (and sa on for all columns). Usually, those
belonging to j; will appear before any in ay, but Lhis is not essential. (If certain linear constraints
are made nonlinear at a later date, this means that entrics in the COLUMNS section will not
have to be reordered. However, the cotresponding row names will need be moved towards the top
of the ROWS section.)

I JACOBIAN = DENSE, the elements of Ji need not be speeified in the MPS file. 1f JACOBIAK
= SPARSE, aif nonzero elements of Jy must be specified. Any variable cocfficiencs should be given
a durnmy value, such as zero. These dummy entrics identify the location of the elements; their
actual values will ‘'be computed later by subroutine FUNCON or by flinite differences.

[f all constraint gradients are known (DERIVATIVE LEVEL = 2 or 3), any Jacobian elementy
that zre constant may be given their correct values in the COLUMNS section, and then they need
not be reset by subroutine FUNCON. This includes values that are identically zero--such cletnents
do not have to be specified anywhere (in the Mi*S filc or in FUNCON). In other words, Jacobian
elements are assumed to be zero unleas specified otherwise.

Note that X(#*) need not have the same dimcnsion in subroutines FUNOBJ and FUNCON [i.e.,
the parameter N may differ), in the event that different numbers are specified by the NONLINEAR
OBJECTIVE and NONLINEAR JACOBIAN keywords. llowever the shorter set of nounlinear variables
must occur at the beginning of the longer set, and the ordering of variables in the COLUMNS
section must match both sets.

A nonlinear objeclive function will often involve variables that secur only linearly in the
constraints. [n such cases we recominend thal the objective variables be placed after the Jacobian
variables in the COLUMNS section, since the Jacobian will then be as small as possible. (See the
variable z in the example above.)

4.5 The RANGES Section 45

4.4 The RHS Section

1 5..... 12 16....22 2B........ 36 40....47 50........ 81
RHS
RHSO% FUNO1L 1.0 ROWOQ =-3.0
RAHSO1 ROWOS 2.5 ROWL2 1.123458
RHEO1 ROWO3 -11.111141
RHSO02 FUNO2 1.0
RHS02 FUROC4 5.0

This section specifies the elements of b; and by in (2)~(3). Together these vectors comprise what
is called the right-hand side. Only the nonzero coefficients nced to be specified. They may appear
in any order. The format is exactly the same as in the COLUMNS section, with Name¢ giving a
name to the right-hand side.

If by = 0 and &g = 0, the RHS header card must appear as usual, but no rhs coefficients need
follow.

The RHS section may contain mora than one right-hand side. The fest one will be used
unless some other name is specified in the SPECS file,

4.5 The RANGES Section (Optional)
1 5..... 12 16,...22 25........36 40....47 50....... .81

E FUNOQ
3 CAPITALL
L CAPITAL2

COLUMNS
RHS
RHSO1 FUNO1L 4.0 FUNO2 4.0
RANGES
RANGEO1T FUNOR 1.0 FUNO2 -1.0
RANGEOL CAPITALL 1.0 CAPITALZ 1.0

Ranges are used for constraints of the form
[<aTz <y,

where both { and 4 are finite. The range of the coastraint is » = u — 1. Either [or u is specified
in the RHS section {as b say), and r is defined in the RANGES section. The resuiting { and u
depend on the row-type of Lhe constraint and the sign of r as lollows:

Row-type Sign of r Lower limit,! Upper limit, u

£ + b &+ ir|
o - b—|r| b
G + or - b b+ir
L +or — b—|rl b

6 4. The MPS File

The format is exactly the same as in the COLUMNS section, with Name0 giving a name to
the range set. The constraints listed above will have the following limits:

4.0 <FUNOL < 5.0,
3.0 <FUNOZ < 4.0,
4.0 < CAPITALL < 5.0,
3.0 < CAPITAL2 < 4.0.

The RANGES section may contain more than one set of ranges. The first set will be used
unless some other name is specified in the SPECS file.

4.8 The BOUNDS Section {Optional)

1 5..... 12 16....22 25....... .38
BAQUNDS

UP BOUNDOT XO1 4.0

UP BOUNDO1 X02 4.9

L0 BOUNDOLT X04 ~1.0

UP BOUNDO1 X04 4.0

FR BOUNDO1 X08
UP BOUNDOLI X08 4.0

The default bounds on all variabies z,; (excluding slacks) are 0 < 2, < oo. If necessary, the
default values £ and co can be changed in the SPECS file to { < z; < u by the LONER and UPPER
keywords respectively,

If uniform bounds of this kind are not suitable, any number of alternative values may be
specificd in the BOUNDS section. As usual, several sets of bounds may be given, and the first
set will be used uniesa some cther name is specified in the SIPECS file.

In thia section, Key gives the type of bound required, Name@ is the name of the bound sct,
and Nametf and Valuel are the column name and bound value. (Name2 and Vaifve2 are ignored.)

Let { and u be the default bounds just mentioned, and let z and b be the column and value
specified. The various bound-types allowed are as follows:

Key Bound-type Resulling bounds
Lo Lower bound b <z< u
up Upper bound [l €<z< b
FX Fixed variable b <z b (ie,z=19)
FR Free variable ~0<z< +o
NI Minus infinity ~-<Lz< u
PL Plus infinity [€z< +0
The effect of the examples above is to give the following bounds:
I €%1 <40
I <€X02<4.0
1.0 < %04 < 4.0
—00 < X08 < 4.0

Note that types FR, MI, or PL shouid always be used to specifly “infinite” bounds; they imply
values of £10%9, which are treated specially at certain times.

4.8 The BOUNDS Section 47

Nonlinear Problems

It is often essential to use bounds to avoid singularities in the nonlinear functions. For example,
il an objective function involves log z;, a bound of the form z; > 10™* may be necessary to avoici
evaluating the objective function at zero or negative valucs of z,. (Subroutine FUNOBJ is usually
not called until a feasible point has been found. Note that r is regarded aa feasible if it satisGes
its bounds to within the FEASIBILITY TOLERANCE t. Thus, it would not be safe to specify the
bound z; > 1078 if ¢ retained its default value t = 10~%.)

Beware that subroutine FUNCON sometimes wiii be called before the nonlinear variables satisfy
their bounds. [f this causes difficuity, one appraach is ta specily feasible values for the offending
variables in the INITIAL bounds set described next.

The IRITIAL Bourds Set

In general, variables will initially have the value zero, if zero lies between the associated upper
and lower bounds. Otherwise, the initial value will be the bound closest to zero.

The name INITIAL is reserved for a special bounds set that may be used to assign other injtial
values. The INITIAL bounds set must appear after any normal bound sets {if any); a warning is
given if it is the first set encountered after the BOUNDS card.

The INITIAL bounds set also influences CRASH during construction of an initial basis. Broadly
speaking, CRASH favors certain variables, ignorss certain others, and treata the remainder as
neutral. The following example illustrates the various cases:

FR INITIAL X1 1.0
FX INITIAL X2 2.0
LO INITIAL X3
UP INITIAL X4
NI INITIAL X5 5.0
PL INITIAL X6 6.0
1. During gradient checking and evaluation of the initial Jacobian, the value of X1 will be 1.0.

Xt will then be favored by CRASH for inclusion in the initial basis. (Free rows and columns

will also be favored.)

2. X2 will initially be superbasic at the value 2.0. {If the number of FX INITIALs has already
reached the SUPERBASICS LIMIT, X2 will initially be nonbasic at the same value 2.0.)

3. X3 and X4 will initially be nonbasic at their respective lower and upper bounds {or at value
zero if both bounds are infinite).

4, X5 and X6 will initially be nonbasic at the specified values 5.0 and 6.0. -

The last five bound types (FX, L0, UP, NI, PL) prevent the associated variables from being included
in the initial basis.

FR INITIAL or FY INITIAL should be used if good values are known for variablea that are
likely to lie between their bounds in an optimal solution. (Type FR is preferred if many such vaiues
are to be specified; however, the values may change when the basic variables are reset to satin(v
Az + [s = 0. Type FX guarantees the specified starting value, but should not be used excessively
if the optimal solution is likely to be close to a vertex.)

LO INITIAL or UP INITIAL should be used for variables that are likely to be on their lower
or upper bound at a solution.

MI INITIAL and PL INITIAL are included for compieteness.

43

4. The MPS File

As with normal bound sets, variables may be liated in any order. (For each entry a linear

scarch is made through the column names, starting at the name on the previous entry. Thus, for

large problems it helps to follow the order of the variables in the COLUMNS section, at least to
some extent.}

The INITIAL bounds set is ignared il a basis file is supplied.

4.7 Commaent Cards

Any card in the MPS file may contain an asterisk “*” in column 1 and arbitrary data in columns

2-31. Such cards will be tteated as comments. They will appear in the printer listing but will
otherwise be ignored.

4.8 Restrictions and Extensions in MPS Format

L.

[T

L]

Blanks are significant in the 8-character name fields. We recommend that all names be left-
justified with no imbedded blanks. In particular, names referred to in the SPECS file musé
be left-justified in the MP9 file; for example, OBJECTIVE = CDSTO2 specifies an 3-character
name whose last two characters are blank.

. Comments ideaily should use only columna 1-61 as noted above,
. Scaie factors cannot be entered in the ROWS section.

[t does not matter il there is no row of type N.

There must. be at least one row in the ROWS section, even for problems with no general
constraints. (It may have row-type N.)

. Nonlinear constraints must appear before linear constraints in the ROWS section.

7. Markers such as INTORG and INTEND are not recognized in the COLUMNS section.
8. Numerical values may be entered in E or F format. Spaces within the t2-character fields are

12

treated as if they were 0's.

. Nonlinear variables must appear bafore linear variabies in the COLUMNS section.
L0.

11,

If RANGES and BOUNDS sections ars both present, the RANGES scction must appear firsi.

In the BOUNDS section, if an UP entry specifics a zero upper bound, the corresponding lower
bound ‘s not affected. (Beware—in some MP systems, the lower bound is converted to —o0.)

The bounds name INITIAL has a special meaning.

5.1 NEW and OLD BASIS Files T

5. BASIS Files

For non-trivial problems, it is advisable to save a BASIS file at the end of a run, in order to
restart the run if necessary, or 1o provide a good starting point for some closely related problem.

Three formats are available lor saving basis deseriptions. They are invoked by SPECS cards
of the foliowing form:

NEW BASIS FILE 10
BACKUP FILE 11 (same as NEW BASIS but on a different fle)
PUNCH FILE 20
DuUwpP FILE 30

The file numbers may be whatever is convenient, or tero for files that are not wanted.

NEW BASIS and BACKUP files are saved every k-th iteration, in that order, where k is the
SAVE FREQUENCY,

NEW, PUNCH and DUMP files are saved at the end of a run, in that order. They may
be re-loaded at the start of a subsequent run by specifying SPECS cards of the following form
respectively:

OLD BASIS FILE 10
INSERT FILE 20
LOAD FILE 30

Only one such file will actuaily be loaded. If more than one positive file number is specified, the

order of precedence is as shown. [{ no BASIS files are specified, one of the CRASH OPTIONs takes
effect.

Figures 5.1-5.3 illustrate the data formats used for BASIS files. 80-character fixed-length
records are suitable in all cases. [36-character records would be adequate for PUNCH and DUMP
files.) The files shown correspond to the optimal solution for the economic-growth model MANNE,
described in section 8.4. Sclected column numbers are included to define significant data fields.
The problem has 10 nonlinear constraints, 10 linear constraints, and 30 veriables.

5.1 NEW and QLD BASIS Files

We sometimes call these files basis maps. They contain the most compact representation of the
state of each variable. They are intended [or restarting the solution of a problem at a point
that was reached by an earlier run on the same problem ot a rulated problem with the same
dimensions. (Perhaps the ITTERATIONS LIMIT was previously Loo small, or some other objective
row is to be used.)

As illustrated in Figure 5.1, the following information is recorded in a NEW BASIS file,

1. A card containing the problemn name, the iteration number when the file was created, the
status of the solution {OPTIMAL SOLN, INFEASIBLE, UNBOUNDED, EXCESS ITNS, ERROR CONDN,
or PROCEEDING), the number of infeasibilities, and the current objcetive value [or the sum of
infeasibilities).

2. A card containing the OBJECTIVE, RHS, RANGES and BOUNDS names, M = the number ol rows
in the constraint matrix, N = the number of columna in the constraint matrix, and SB = the
number of superbasic variables.

50

5. BASIS Files

3. A set of (N+ M —1)/80 + 1 cards indicating the state of the N column variables and the W

slack variables in that order. One character HS(j) ia recorded for each j = 1,2,...,N+ ¥ as
follows, written with FORMAT (80I1).

HS(j) State of the j-th variable
] Nonbasic at lower bound
1 Nonbasic at upper bound
2 Superbasic
k] Basie

I variable j is fixed (lower bound = upper bound), then H8(;) may be 0 or 1. The same
ia true if variable j is-free (infinite bounds) and still nonbasic, although free variables will
almost always be basic.

. A set of cards of the form

2 z
written with FORMAT (I8, 1PE24.14) and terminated by an entry with j = 0, where j denotes
the j-th variable and z; is a real value. The j-th variable is either the j-th column or the
{7 ~ N)-th slack, if 7 > N. Typically, H8{s) = 2 (superbasic}). When nonlinear consiraints are
present, this list of superbasic variables ia extended to include all basic nonlinear variables.
The Jacobian matrix can then be reconstructed exactly for a restart.

Loading a NEW BASIS file

A file that has been saved as an OLD BASIS Ale may be input at the beginning of a later run as
a NEW BASIS file. The following notes are relevant:

1.
2.

The first card is input and printed but otherwise not used.

The values labelled M and N on the second card must agree with those for the MPS file that
has just been rcad. The valuc labelied 8B is input and printed but is not used.

3. The next set of cards must contain exactly M values H§(j) = 3, denoting the basic variables.

. The list of and z; values must include an entry for every variable whose state is HS(j) =2

(the superbasic variables).

. Further j and z, values may be included, in any order.
. For any j in this list, if H8(j) = 3 (basic), the value z; will be recorded for nonlinecar

variables, but the variable will remain basic.

If HS(j) 7 3, variable j will be initialised at the value z; and its statc will be resct to 2
(superbasie). If the number of superbasic variabies has aiready reached the SUPERBASICS
LIMIT, then variable j will be made nonbasic at the bound nearest to z; (or at zero if it is a
(ree variable).

5.1 NEW and OLD BASIS Files 51

| ISP .} 15....,23 29........40 43....50 L) . ||
HANMEL] I™N tH OPTIMAL SQLN MNINF D O8J -1.6700976576430 00
OBJ xFUNOSJY RHS=RNYS RNG=RANGE1 BNG2BOUND ¢ M= 20 M= 30 3Bx 7

0322222223033333333%333333333111111111110000000000
3.2144303048344170 00
1.304004540903450 00
L] 3.395219987011400 00
) 3.487878208733720 00
7 3.581722941434240 0O
] 3.6764205%1 145790 00
9
1
H

&

3.771582587441020 00

3.030000000000000 00

3.126650351567880 ¢0
19 3.866066466666567D 00
11 9.560000000000000~-01
12 ¥.68481506385%2470-01
13 9.970010109%6414690-01
14 1.0282008549133170 00
15 1.0596701522064730 00
e 1.092272224117200 08
17 1.126076354918100 00
18 1.141143958038100 00
19 1.197628149454330 00
20 1.2139430802455% 00

l!"-l.-‘ 1:---01--------t--032

Figure §.1. Format of NEW aad OLD BASIS fles

Warning: This format is aot quite compatible with MINOS 4.0 in the following respects.

1. On the second card, M is the qumber of constraints (m, as before) but N is now the number
of variables excluding slacks (i.e., n, the number of columns in the MPS file pius the number
of phantom columns, if any). Previousiy, N had the value n + § + m; this included 1 foe the
right-hand side and m for the slacks.

2, The basis map starting at card 3 does not contain an entry for the right-hand side, which
was previously in position n + 1, The length of the map is now n + m, not n + 1 + m.

3. In the list of {j z,) entries, the values of j referring to slacks are now one less than before.
(These are entries for which j > n.)

A basis map {rom MINOS 4.0 can thercfore be converted to the present format with reasoaable
ease. PUNCH and DUMP files from MINOS 4.0 should be acceptable as INSERT and LOAD files
wilhout change.

52 5. BASIS Files

5.2 PUNCH and INSERT Files

These files provide compatibility with commercial mathematical programming systems. The
PUNCH file from a previous run may be used as an INSERT file for a later run on the same
problem. It may also be possible to modify the INSERT file and/or problem and still obtain a
useful advanced basis.

The standard MPS format has been slightly generalized to allow the saving and reloading of
nonbasic solutions. It is illustrated in Figure 5.2. Apart from the first and last card, each entry
has the following form:

Columns 2-3 5-12 15-22 25-368
Contents Key Namel Name2 Value

The various Keys are best defined in terma of the action they cause on input. It is assumed that
the basis is initially set to be the full set of slack variables, and that column variables are initially
at their smallest bound in absolute magnitude.

Action to be taken during INSERT

Make variable Name! basi¢ and siack Name2 nonbaasic at its lower bound.
Make variable Name! basic and slack Name2 nonbasic at its upper bound.
Make variable Namel nonbasic at its lower bound.

Make variable Namel nonbasic at its upper bound.

Make variable Namel superbasic at the specified Value.

$SEEE T

Note that Namel may be a column name or a row name, but {on XL and XU cards) Name2 must
be a row name. In all cases, row names indicate the associated slack variable, and if Namel is
a nonlinear variable then its Value is recorded for possible use in defining the initial Jacobian
matrix.

The key SB is an addition to the standard MPS format to allow for nonbasic solutions.

Notes on PUNCH Data

1. Variables are output in natural order. For example, on the first XL or XU card, Namel will be.
the first basic column and Name2 will be the first row whose slack is not basic. (The slack
could be nonbasic or superbasic.)

2. LL cards are got output for nonbasic variables if the corresponding lower bound value is zcro.

3. Superbasic slacks are output last.

4. PUNCH and INSERT files deal with the status and valucs of slack variables, This is in
contrast to the printed solution and the SOLUTION file, which deal with rows.

Notes on INSERT Dats

1. Before an INSERT file is read, column variables are made nonbasic at their smallest bound
in absolute magnitude, and the slack variables are made basie.

2. Preferably an INSERT file should be an unmodified PUNCII file from an earlice run on the
same problem. If some rows have been added to the problem, the INSERT file need not be
altered. (The slacks for the new rows will be in the basis.)

5.3 DUMP and LOAD Files 53

3. Entries will be ignored if Namel is already basic or superbasic. ¥L and XU cards will be
ignored if Vame2 is not basic.

4. SB cards may be added before the ENDATA card, to specily additional superbasic columas or
slacks.

5. An 8B card will not alter the status of Vamel if the SUPERBASICS LIMIT has been reached.
However, the associated Value will be retained if Namel is a Jacobian variable.

5.3 DUMP and LOAD Files

These files are similar to PUNCH and INSERT filea, but they record solution information in
a manner that is more direct and more easily modified. In pariicular, ne distinction is made
between columns and slacks. Apart from the first and last card, each entry has the form

Columna 2-3 5-12 25-38
Contenta Key [Name Value

as illustrated in Figure 5.3. The keys LL, UL, BS and SB mean Lower Limit, Upper Limit, Basic
and Superbasic respectively. '

Notes on DUMP Data

1. A card is output for every variable, columns followed by slacks.
2. Nonbasic free variables will be output with either LL or UL keys and with Value zero.

Notes on LOAD Data

1. Before a LOAD file is read, all columns and stacks are made nonbasic at their smallest bound
in absolute magnitude. The basis is initially empty.

2. Each LL, UL or BS card causes Name to adopt the specified status, The associated Value will
be retained if Name is a Jacobian variable.

3. An SB card casuses Name to become superbasic at the specified Value.

4. An entry will be ignored il Name is already basic or supcrbasic. (Thus, enly the first BS or
6B card takes effect for any given Name.)

5. An 5B card will not alter the status of Name if the SUPERBASICS LIMIT has been reached,
but the associated Value will be retained if Name i3 a Jacobian variable,

6. (Partial basis) Let M be the number of rows in the problem. (I fewer than M variables are
specified to be basic, a tentative basis list will be constructed by adding Lhe requisite number
of slacks, starting from the first row and taking those that were not previously specified to
be basic or superbasic. (If the resulting basis proves Lo be singular, the basis factorization
routine will repiace a number of basic variables by other slacks.) The starting point obtained
in this way will not necessarily be “good”.

7. (Too many basics) Il W variables have alrcady been specified as hasie, any further BS keys will
be treated as though they were SB. This feature may be useful for combining solutions to
smaller problems.

5. BASIS Filea

LI PR |)

HANE
LL KAPOR?
% KAPOQR
S8 KAPOG3
W KAPOOS
38 KARODS
S8 KAPOM
3§ KAPOD?
& KAPOSS
S8 KAPOOY
) KAROIO
LL CoNget
X coNoez
A CONOR3
XU CONOOH
A CoNORS
A CONOOS
YAl CoNOe?
R CONOOS
Xy CoNOOY
XL CoNOYY
XL INVOM
XL INvooR

X Divoes
XL INVeoA
XL INVEOS
XL INvODe
L INvaor
XL INvOos
XL INvaoe
UL IWweie
ENDATA

Figure §.3. Format of PUNCH aad INSERT Sles

5....22 2%........34

MANNES §
NONGS1

MONODS
MONOOS
MONGH?
noONg DS
HONG DS
MONG1d

CAPOSS
CAPR

CAMOE
Carger

CAreR®
CAPRY D
TERMINY

PUHCH/INSERT

3.050000 00
3.120450 00
3.21443D 00
3.304000 00
3.393120 00
3.487800 00
3. 501720 00
3.476430 08
3771500 4%
3.564670 00
. 530000-9)
2.680180-01
1.970010-01
1.028200 00
1.08%7 00
.00t N
1124040 M
1.141160 0
1.197630 09
1.213940 0%
7. 64504002
$.770400-02

5.9%7410~-02
. 121540-02
9.245420-08
7. 304400-92
. 47054002
e, 51340002
9.500A10-02
1.140000-01

' "\.Il‘:

RAME
LL XAP2OY
83 xarso2
5 KAPOO3

HFHETH R HE

i

i;i!i!
W=

EERSSEERURERERE ZRRRBUSLRRECCuBsEEY
2

FES
Hi

Figure 5.3, Farmat of DUMP and LOAD files

15....22 28........%

OUMP /1080
3.05000D 0O
3.126630 00
3.214430 00
3.30%000 09
3.395220 00
3.48788D DO
3.58170 o0
3474470 04
3.771500 09
3.504670 00
9.500000-01
. 504 100-01
. 7801001
1.000200 o0
1.05%70 o0
1.07270 00
1.120000 00
1.16118D .09
1.197430 08
1.21390 8
T7.605040-02
4.778000-02

6. 99 0-02
9.121540~-02
9.265820-02
9.304480~02
Y. 47056002
9. 515400-02
9.500410-02
1.169800-01
0.000000-21
0.000000-01
0.000000-01
£.000000-04
9.000000-01
0.0000C0-01
0.000000-01
@.000000-01
0.000020-01
©.007000-01
6.080000-01
0.000000-01
9.000000-01
0.000000-01
4.000000-01
0.900¢00-01
0.880000-01
€.900000-01
0.,000000-01
0.080000-01

5.4 Restarting Modified Problems 55

5.4 Restarting Modifled Problems

Sections 3.1-5.3 document three distinet starting methods [QLD BASIS, INSERT and LOAD
files), which may be preferabie to any of the cold start (CRASH) options. The best choice depends
on the extent to which a problem has been modified, and whether it is more convenient to specify
variables by number or by name. The following notes offer some rules of thumb,

Protection

In general there is no danger of specifying infinite values. For example, if a variable is specified
ta be nonbasic at ar upper bound that happens to be 40, it will be made nonbasic at its lower
bound. Conversely il ita fower bound is —oo. If the variable is /ree (both bounds infinite}, it will
be made nonbasic at value zero. No warning message wiil be iasued.

Default Status

If the status of a variable ia not explicitly given, it will initially be nonbasie at the bound that is
smallest in absolute magnitude. Ties are broken in favor of lower bounds, and free variables will
again take the value zero.

Reatarting with Different Bounds

Suppose that a probiem is to be restarted after the bounds on some variable X have been altered,
Any of the basis files may be used, but the starting point obtained depends on the status of X at
the time the basis is saved.

If X is basic or superbasic, the starting point will be the same as before (all other things being
equal). The value of X may lie outside its new set of hounds, but there will be minimal loss of
feasibility or optimality for the problem as a whole.

If X was previously fixed, it is likely to be nonbasic at its lower bound {which happens to be
the same as its upper bound}. Increasing its upper bound will not affect the solution.

In contrast, if X is nonbasic at its upper bound and if that bound is altered, the starting values
for an arbitrary number of basic variables could be changed {since they wili be recomputed from
the nonbasic and superbasic variables). This may not be of great consequence, but sometimes it
may be worthwhile to retain the old solution precisely. To do this, one must make X supecrbasic
at the original bound value.

For example, if X is nonbasic at an upper bound of 5.0 {which has now been changed}, one
should insert a card of the form

j 5.0
near the end of an QLD BASIS file, or the card
SB X 5.0

near the cnd of an INSERT or LOAD file. Note that the SPECS file must specily a SUPERBASICS
LIMIT at least as large as the number of variables involved, even for purely linear problems.

Sequences of Problema

Whenever practical, a scries of related problems should be ordered so that the most tightly
constrained cases are solved first. Their solutions will often provide feasible starving points for
subsequent relaxed problems, as long the above precautions are taken.

56 5. BASIS Files

Altering Bounds with the CYCLE Option

Sequences of problems will sometimes be defined in conjunction with the CYCLE facilities. Various
alterations can be made to each problem [rom within your own subroutine MATMOD. In particular,

it is straightforward to alter the bounds on any of the columns or slacks.
Unfortunately, the present implementation of MINOS does not make it easy to alter the set

of superbasic variables from within MATMGD. If the bound on a nonbasic variable is altered, it is
simplest to accept the resuiting perturbation to the vaiues of the basic variables (rather than
making the variable superbasic as suggested above).

6.1 Iteration Log 57

8. QUTPUT

The following information is output to the PRINT file during the solution of each problem referred
to in the SPECS file.

e A listing of the relevant part of the SPECS file.

¢ A listing of the parameters that were or could have been set in the SPECS fle.

® An estimate of the amount of working storage nceded, compared to how much is available.

o A listing of the MPS file, possibly abbreviated to the header cards and comment cards,

¢ Some statistics about the problem in the MPS file.

+ The amount of storage available for the LU Tactorisation of the basis matrix.

s A summary of the acaling procedure, il SCALE was specified,

¢ Notes about the initial basia resulting from a CRASH procedure or a BASIS file.

o The iteration log.

o Basis factorization statistics,

¢ The EXIT condition and some statistics sbout the solution obtained.

e The printed solution, il requested.

The last four items are described in the following sections. Further brief output may be

directed to the SUMMARY Fhle, as discussed in section 8.8.

.1 Iterstion Log

One line of information is output to the PRINT file every k-th minor iteration, where & is the
specified LOG FREQUENCY (default ¥ = 1). A heading is printed before the first such line following
a basis f{actorization. The heading contains the items described below. In this deseription, a
PRICE operation is defined to be the process by which one or more nonbasic variables are selected
to become superbasic (in addition to those already in the superbasic set). Normally just one
variable is selected, which we will denote by JQ. If the problem is purely linear, variable J§ will
usually become basic immediately (unless it should happen to reach its opposite bound and return
to the nonbasic set}).

If PARTIAL PRICE isin effect, variable JQ is selected from App or fpp, the PP-th segments of
the constraint matrix (A [I). If NULTIPLE PRICE is in eifect, scveral variables may be selected
fram App or [pp. In this case, JQ refers to the variable with the largest favorable reduced cout,
DJ.

Label Description

I™ The current iteration number. For problems with nonlincar constraints, thia is the
cumulative number of minor iterations.

PH The current phase of the solution procedure, as follows:
Phase 1 of the simplex method is being used to find a [easible point,
2 Phase 2 of the simplex method is being used to optimize the linear objective.

Normally, Phase 1 and 2 are used for purcly lincar problems. They may alse be
used at Lhe start of a run cven for nonlinear problema, il the initial basis contains
only linear variables, Any superbasic variables will be temporarily held at theie
initial values.

58

6. Output

PP

NOPT

DJ,RG

+5BS

-SBS

FPhase 3 of the reduced-gradient procedure is being used. This is the same as Phase
4 except that a PRICE opera.ion is performed prior to the iteration, adding one
or more nonhasic variables to the superbasic set.

Phasc 4 of she reduced-gradient procedure is being used, Optimization ia per-
farmed on the basic and superbasic variables (ignoring the nonbasics].

The Partial Price indicator. The variable(s) selected by the last PRICE operation
came [rom the PP-th partition of A and I. PP is set to zero when the basis is
refactored. It is reset during Phase 1, 2 or 3.

The number of “non-optimal® variables present in the set of nonbasic variables
that were scanned during the last PRICE operation. It is reset during Phase §, 2
or 3.

[n Phase 1, 2 or 3, this is DJ, the reduced cost (or reduced gradient) of the variabie
JQ selected by PRICE at the start of the present iteration. Algebraically, DJ is
d;y = g5 — rra,- for j = JQ, where g; is the gradient of the current objective
function, 7 is the vector of dual variables, and a; is the j-th column of the
constraint matrix (4 [).

In Phase 4, this quantity is RG, the norm of the reduced-gradient vector after the
present iteration. (It is the largest value of |d,| for variables j in the superbasic
set.)

Note that for Phase 3 iterations, DJ is the norm of the reduced-gradient vector at
the start of the iteration, just after the PRICE operation.

The variable JQ selected by PRICE to be added to the superbasic set. (This is
zero in Phase 4.)

The variable chosen to leave the set of superbasics. [t has become basic if the
entty under -BS is nonzero; otherwise it has bccome nonbasic.

The vaciable removed from the basis (if any) to become nonbasic.

The step length « taken along the current scarch dircction . The basic and
superbasic variables z,, have just been changed to z,5 + ap.

If column a, replaces the r-th column of the basis /7, PIVOT is the r-th ciement of a
vector y satisfying By = a,. Wherever possiblc, STEP is chosen to avoid extremely
small values of PIVOT (since they cause the hasis to be ncarly singular). [n rare
cases, it may be neccasary to inerease the PIVOT TOLERANCE to exclude very small
elements of ¥ from consideration during the computalion of STEP.

The number of nonseros representing the basis factor 1. [mnediately afier a basis
factorisation B = LI/, this is LENL, the number of subdiagunal clements in the
columns of a lower triangular matrix. Furlther nonzeros are added lo L when
various columns of B are later replaced. (Thus, L increasey monotonically.)

The number of nonzeros in the basis factor /. Immediately alter a basis lactoriza-
tion, this is LENU, the number of diagonal and supcrdiagonal elements in the rows
of an upper triangular matrix. As columns of /? arc replaced, the malrix Uis
maintained explicitly {in sparse form). The value of U may {luctuate up or down;
in generai it will tend to increase.

8.1 Iteration Log 59

NCP

NINF

The number of compressions required to recover storage in the data structure for
U. This includes the number of compressions nceded during the previous basis
factorization. Normally NCP should increase very siowly. II not, the amount of
workapace available ta MINOS should be increased by a significant amount. As a
suggestion, the work array Z(») should be extended by L + U elements.

The number of infeasibilities before the present iteration. This number decreases
monotonicaily.

SINF,OBJECTIVE If NINF > 0, this is SINF, the sum of infeasibilities before the present iteration.

(It will usually decrease at each nonzero STEP, but if NINF decreases by 2 or mare,
SINF may occasionally increass.)

Otherwise, it is the value of the current objective function after the present
iteration. Note that “current objective function” can mean different things when
NINF = 0. For linear programs, it meana the true linear objective function. For
problems with linear constraiats, it means the sum of the linear objective and-the
value returned by subroutine FUNOBJ. For probiems with nonlinear constraints, it
is the quantity just described if LAGRAKGIAN = NO; otherwine it is the value of the
augmented Lagrangian {unction for the current major iteration {which tends to
the true objective function as convergence is approached). '

The following items are printed if the problem is nonlinear or if the superbasic set is non-empty
{i.e., if the current solution is nonbasic).

Label

NCON

NOBJ

NSB

HMOD

Description

The number of times subroutine FUNCON has becn called to evaluate the nonlincar
constraint functions.

The number of times subroutine FUNOBJ has been called to evaluate the nonlinear
abjective funetion.

The current aumber of superbasic variables.

An indication of the type ol modifications made to the triangular malrix & that
is used to approximate the reduced Hessian matrix. Two integers 4; and 12 are
shown. They will remain zero {or linear problems. If iy = 1, a BFGS guasi-Newton
update has been made to R, to account for a move within the current subspace.
{This will not occur if the solution is infeasible.) If {3 = {, R has been moditicil
to account for a change in basis. This wiil somatimes oceur even if the solution is
infeasible (if a {easible point was obtained at some earlier stage).

Both updates are implemented by triangularizing the matrix R 4+ »wT for some
vectors v and w. I an update fails for numerical reasons, ¢y or 13 will be sel ta 2,
and the resulting R will be nearly singular. {However, this is highly unlikely.)

8. Output

H-CONDN

CANV

An estimate of the condition number of the reduced Hessian. It is the square of
the ratio of the largest and smallest diagonals of the upper triangular matrix R.
This constitutes a lower bound on the conditien number of the matrix TR that
approximates the reduced Hessian. H-CONDN gives a rough indication of whether or
not the optimization procedure is having difficulty. If € is the relative precision of
the machine being used, the reduced-gradient algorithm will make slow progress if
H-CONDN becomes as large as ¢~ 172, and will probably fail to find a better solution
if H-CONDN reaches ¢~3/4 or larger. (On IBM-like machines, these values are about
108 and 10%%.)

To guard against high values of H-CONDN, attention should be given to the scaling
of the variablea and the constrainta. [n some cases it may be necessary to add
upper or lower bounds to certain variables to keep them a ressonable distance
from singularities in the nonlinear functions ar their derivatives.

A set of four logical variables Cy, Cz, C3, Cy that are used to determine when to
discontinue optimization in the current subspace (Phase 4] and consider releasing a
nonbasic variable {rom its bound (the PRICE operation of Phase 3). Let RG be the
norm of the reduced gradient, as described above. The meaning of the variables
C; is as follows:

C, ia TRUE if the change in = was sufficiently smail;

C; is TRUE il the change in the objective was sufficiently smail;
C3 is TRUE if RG is smaller than some loose tolerance TOLRG;
C, is TRUE il RG is smaller than some tighter tolerance.

The test used is of the form
it (Cy and Cy and C3) or Cy4 then go to Phase J.

[n the present implementation, TOLRG == ¢|DJ}, where ¢ is the SUBSPACE TCLERAKCE
‘nominally 0.5} and DJ is the reduced-gradient norm at the most recent Phase 1
iteration. The “tighter tolerance” is the maximum of 0.1 TOLRG and 10~ 7([x(|.
Only the toterance ¢ can be aitered at run-time (sce section 3.3).

8.2 Basis Mactorization Statistics 51

6.2 Dasis Factorization Statiastics

The lollowing items are output whenever the basis matrix B is factored. Gaussian elimination is
used to compute an LU/ factorization of the form

8= Ly,

where L is unit lower triangular and PUQ is upper triangular {or some permutation matrices P
and @. This factorization is stabilized in the manner described under LU FACTOR TOLERANCE in

section 3.3.

Label
FACTORIZR

DEMAND

ITERATION
INFEAS
OBJECTIVE

NONLINEAR
LINEAR
SLACKS
ELEMS
DENSITY

COMPRSSNS

MERIT

LENU

Deseription
The number of factorizations since the start of the run.

A code giving the reason for the present factorisation. (Since this is not important
to the user we omit details.)

The current iteration number.
The number of infeasibilities at the start of the previous iteration,
If INFEAS > 0, this is the sum of infeasibilities at the start of the previous iteration.

If INFEAS = 0, this is the value of the objective function after the previous
iteration. If there are nonlinear constraints, it is the value of the augmented
Lagrangian Tor the present subproblem.

The number of nanlinear variables in the current basis 5.
The number of linear variables in B.

The number of slack variables in B.

The number of nonzero matrix ciements in 3.

The percentage nonsero density of I3, 100 3 ELEMS /(M % M), where M is the number
of rows in the problem (M == NONLINEAR + LINEAR + SLACKS).

The number of times the data structure holding the partially factored matrix
needed to be compressed, to recover unused storage. Ideaily Lhis aumber should
be zaro. If it is more than 3 or 4, the amount of workspace available to MINOS
should be increased for eificiency.

The average Markowils metit count for the clements chosen Lo be the diagonals
of PUQ. Each merit count is defined to be {¢ — 1){r — 1) where ¢ and r are the
number of nonzeros in the column and row containing the clement at the time it
is selected to be the next diagonal. MERIT is the average of W such quantities. It
gives an indication of how much work was required wo prescrve sparsity during the
lactorization.

The number of nonzeres in L. On IBM-like machines, cach nonicro is represcnted
by one REAL*8 and two INTEGER*2 dala types.

The number of nonzeros in /. The storage required for each nonzero is the sume
as for the nonzeros of L.

62

8. Output

INCREASE

LMAX

BMAX

UMIN
GROWTH

The petrcentage increase in the numbet of nonzeros in L and U relative to the
number of nonzeros in B; ie., 100 X (LENL + LENU — ELEMS)/ELEMS.

The maximum subdiagonal element in the columns of L. This will be no larger
vhan the LU FACTOR TCLERANCE.

The maximum nonzers element in H.

The maximum nonzero element in U, excluding elements of B that remain in U
unaltered. (For example, if a slack variable is in the basis, the corresponding row
of B will become a row of U/ without alteration. Elements in such rows will not
contribute to UMAX. Il the basis is strictly triangular, none of the elements of B
will contribute, and UMAX will be zero.)

[deally, UMAX shouid not be substantially larger than BMAX. If it is several orders
of magnitude larger, it may be advisable to reduce the LU FACTOR TOLERANCE to
some value nearer 1.0. (The default value is 10.0.)

The smallest diagonal element of PL/Q in absolute magnitude.
The ratio UMAX/BMAX, which should not be too large (see above).

As long as LMAY is not [arge (say 10.0 or less), the ratio max{BMAX, UMAX}/UMIN
gives an estimate of the condition number of B. If this number ia extremely large,
the basis is necariy singular and some numerical difficultics could conceivably occur.
{(However, an cffort is made to avoid neae-singularity by using stacks to replace
columns of B that would have made UMIN extremely small, Messages are issued to
this effect, and the modified basis is refactored.)

6.3 EXIT Conditions 63

6.3 EXIT Conditions

For each problem in the SPECS file, a2 message of the form EXIT -- message is printed to
summarize the final resuit. Here we describe each message and suggest possible courses of action.

System Note: A number is associated with each message below. It is the final value assigned
to the integer variables INFORM and IERR, for possible use within subroutines MINOS1 and MINQS2.
The variables appear in the declarations

SUBROUTINE MINOS2{ Z,NWCORE,NCALLS,INFORM)
and
COMMON /WSLOG1/ IDEBUG, IERR,LPRINT

If a problem is infeasible, for example, their final values will be INFORM = IERR = 1.

The following messages arise when the SPECS file is found to contain
no further problems,

-2. EXIT -- INPUT ERROR. MINOS ENCOUNTERED END-OF-FILE OR AN
ENDRUN CARD BEFORE FINDING A SPECS FILE ON UMIT nan

The SPECS file may not be properiy assigned. its unit number nn is defined at compile time in
subroutine KIFILE, and normally it is the system card input stream.

Otherwise, the SPECS file may be empty, or cards containing the keywords SXIP or ENDRUN
may imply that all problems should be ignored (see section 1.8).

-1. ENDRUN

This message is printed at the end of a run if MINOS terminates of its own accord. Otherwise,

the operating system will have intervened for one of many possible reasons (excess time, missing
file, arithmetic error in user routines, ete.).

: The following mesaages arise when optimization tcrminates grace-
fully. A solution exists, any of the BASIS files may be saved, and
the solution will be printed and/or saved on the SOL.UTION file if
requested.

0. KEXIT -- OPTIMAL SOLUTION FOUND
This is the message we all hope to scel [t is certainly preferable to every other message,
and we naturally want to believe what it says, because Lhis is surely one situation where the
computer knows best. There may be cause for celebration if the objective funclion has reached
an astonishingly new high (or low). Or perhaps it will signai the cnd of a sirenuous series of runs
that have iterated [ar into the night, depleting one's paticnee and comnputing funds to an cqually
alarming degree. {We hope noll}

In all cases, a distinct level of caution is in order, even if it can wait until next morning. For
example, if the objective value js much better than expected, we may have obtained an optimal
solulion Lo the wrong problem! Almost any item of data could have that effect, if it has the wrong
value or is entered in the wrong columns of an input record. There may be thousands of items of
data in the MPS file, and the noniinear functions (if any) could depend on input files and other

54 6. Qutput

data in innumerable ways. Verifying that the problem haa heen defined correctly ia one of the
more difficult tasks for a model builder. For early runs, we suggest that the LIST LIMIT be set
to a suitably large number to allow the MPS file to be printed for visual checking. It is also good
practice in the function subroutines to print any data that ia read in on the first entry.

If nonlinearities exist, one must always ask the question: could there be more than one local
optimum? When the constraints are linear and the objective is known to be convex {e.g., a sum
of squares) then all will be well if we are minimizing the objective: a local minimum is a global
minimum in the sense that no other point has a lower function value. {(However, many points
could have the same objective value, particularly if the objective is largely linear.) Conversely, if
we are maximizing a convex function, a local maximum cannot be expected to be global, unlesa
there are sufficient constraints to confine the feasible region,

Similar statements could be made about nonlinear constraints defining convex or concave
regions. However, the functions of 2 prablem are more likely to be neither convex nor concave.
Our advice is always to apecify a starting point that is as good an estimate as possible, and to
include reasonable upper and lower bounds on all variables, in order to confine the solution to
the specifie region of interest. We expect modecllers to know something about their problem, and
to make use of that knowledge as they themselves know best.

One other caution about "OPTIMAL SOLUTION”s. When nonlincarities are present, the final
size of the reduced-gradient norm (NORM RG) should be examined to see if it is reasonably small
compared to the norm of the dual variables (NORM PI). These quantities are printed following the
EXIT message. MINOS atternpts to ensure that

NORM RG / NORM PI < OPTIMALITY TOLERANCE.

However, if messages of the form XXX SEARCH TERMINATED occur ai the end of the run, this
condition will probably not have been satisfied. The final solution may or may not be acceptably
close to optimal. Broadly speaking, if

NORM RG / NCRM PI = L0,

then the objective function would probably change in the d-th significant digit if optimization
could be continued. One must judge whether or not d is sufficiently large.

1. EXIT -- THE PROBLEM IS INFEASIBLE
When the constraints are linear, this message can probably be trusted. Feasibility is measured
with respect to the upper and lower bounds on the variables. The message teils us that among
all the points satisfying the general constraints Az + s = 0, there is appacently no poial that
satisfies the bounds on z and ». Violations as small as the FEASIBILITY TOLERANCE are ignorcd,
but at least one component of z or & violates a bound by more than the tolerance.

Note: Although the objective function is the sum of infeasibilitics (when NINF > 0), this sum
will usually not have been minimized when MINOS recognizes the situation and exits. There may
exist other points that have a significantly lower sum of infeasibilities.

When nonlinear constraints are present, infeasibility is much harder to recognize corrcctly.
fven il a feasible solution cxists, the current linearizaiion of the constraints may not contain A
feasible point. [n an attempt to deal with this situation, MINOS is prcpared to relax the bounds
on the slacks associated with nonlinear rows. In the current implementation, the bounds are
relaxed by increasingly large amounts up to 5 times per major iteration. Normally a feasible point

§.3 EXIT Conditions 5

will be obtained to the perturbed constraints, and optimization can continue on the subproblem.
However, if § consecutive subprobiems require such perturbation, the problem is terminated
and declared INFEASIBLE. Clearly this is an ad hoc procedure. Wherever possible, nonlinear
constraints shonld be defined in such a way that fecasible points are known to exist when the
constraints are iinearized.

2. EXIT -- THE PROBLEM IS5 UNBOUNDED (OR BADLY SCALED)
For linear problema, unboundedness is detected by the simplex method when a nonbasic variable
can apparently be increased or decreased by an arbitrary amount without causing a basic varjable
to violate a bound. A message prior to the EXIT message will give the index of the nonbasic
varigbie. Consider adding an upper or lower bound to the variable. Also, examine the constraints
that have nonzeros in the associated column, to see if they have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error wiil give an
erroneous indication of unboundedness. Consider using the SCALE option.

For nonlinear problema, MINOS tonitors both the size of the current objective function and
the size of the change in the variables av each step. If either of these is very large (as judged by
the UNBOUNDED parameters — see saction 3.3), the problem is terminated and declared UNBQUNDED.
To avoid large function values, it may be necessary to impose bounds on some of the variables in
order to keep them away from singularities in the noalinear functions.

3. EXIT ~- TOO MANY ITERATIONS
Either the ITERATIONS LIMIT or the MAJOR ITERATIONS LIMIT was exceeded before the required
solution could be found. Check the iteration log to be sure that progress was being made. If s,

restart the run using a basis file that was saved {or should have been saved!) at the end of the
run.

4., BEXIT ~-- THE OBJECTIVE HAE WOT CHANGED FOR THE LAST nnn ITERATIONS
This is an emergency measure for the rare occasions when the solution procedure appears to be
cyeling. Suppose that a zero step is taken for several consecutive iterations, with a basis change
occurring cach time. [t is theoretically possible far the set ol basic variables to become the same
as they were one or more iterations earlier. The same sequence of iterations would then occur ad
infinitum.

No direct attempt is made to recognise such cycling. The method used for delermining
the step size tends to guard against it happening, but nothing is guaranteed. Furthermore, on
so-called degenerate models (in which many basic variables are cqual in value to their upper or
lower bounds), a great number of consecutive zero sieps may have to occur before any progress
can be made. A generous limit is thercfore used on the number of conaceutive zero steps allowed
before this exit is taken. For small problems, the limit nan is the maximum of 200 and 2(m + n).
For large problems (m +n > 1000) it is 1000.

§. EXIT -- THE SUPERBASICS LIMIT IS TOO SMALL... nnn
The problem appears to be more nonlinear than anticipated. The curreat seb of basic and
superbasic variables have been optimized as much as possible and a PRICE oprration is neccssary
to conlinue, but there are already nnn superbasics (and no room for any more).

In general, raise the SUPERBASICS LIMIT s by a reasonable amount, bearing in mind the
storage needed for the reduced Ilessian. (Thec HESSIAN DIMENSION A will also increase to s

56 6. Qutput

unless specified otherwise, and the associated storage will be about 1/2s% words.) In extreme
cases you may have to set h < a Lo conserve storage, but beware that the rate of convergence
will probably lall off severely,

8. EXIT -- REQUESTED BY USER IN SUBROUTINKE FUNOBJ (or FUNCON)
AFTER nnn CALLS

This exit occurs if the subroutine parameter MODE is set to a negative number during some call
to FUNOBJ or FUNCON. MINOS assumes that you want the problem to be abandoned fozthwith.

In some environments, this exit means that your subroutines were not successfully linked
to MINOS. I the defauit versions of FUNOBJ and FUNCON are ever cailed, they issue a warning
message and then set MODE to terminate the run. For example, you may have asked the operating
system to

LINK MINOS, FUNCBJ, FUNCOM
when in fact you should have said
LINK FUNOBJ, FUNCON, MINOS

{or something similar) to give your own subroutines priority. Most linkers or loaders retain the
firat version of any subprogram that they see.

7. EXIT -- SUBRQUTINE FUNOBJ SEEMNS TOU BE GIVING INCORRECT GRADIENTS

A check has been made on some individual elements of the gradient array, and at least one
component G{(j) is being set to a value that disagrees markedly with a forward-difference estimate
of 3F [8z,. (The relative diffcrence between the computed and cstimated values is 1.0 or more.)
This exit is a safeguard, since MINOS wiil usually fail to make progress when the computed
gradients are soriously inaccurate, In Lhe process it may expend considerable effort before
terminating with exit 9 below.

Check the function and gradient computation very carcfully. A simple omission (such as
forgetting to divide F by 2) could explain everything. If F or G(;) is very large, then give serious
thought to scaling the function or the nonlinear variables.

Il you feel certain that the computed G{j) i3 correct {and that the Torward-difference estimate
18 therefore Wrong), you can specify YERIFY LEVEL & tu piuvent iadividual clemento from being
checked. However, the optimization procedure is likely to terminate unsuccessfully.

8. EXIT -- SUBROUTINE FUNCON SEEMS TO BE GIVING INCORRECT GRADIENTS

This is analogous to the preceding cxit. At leasl one of the computed Jacobian elements is
significantly dilferent from an estimate obtained by forward-differencing the constraint vector
/(z). Follow the advice given above, trying to ensure thai the arrays F and G are being set
correetly in subroutine FUNCON.

9. EXIT -- THE CURRENT POINT CANNOT BE IMPROVED UPON
Several circumstances could lead to this exit.

1. Subroutine FUNOBJ and/or subroutine FUNCON could be returning accurate function vatues
but inaccurate gradienis (or vice versa). This is the most likely cause. Study the comments
given for exits 7 and 8, and do your utmost to ensure that the subroutines are coded correctly.

6.3 EXIT Conditions 67

2. The function and gradient values could be consistent, but their precision could be too low. For
example, accidental use of a single-precision data type when double-precision was intended
throughout, would lead to a relative lunction precision of about 10~% instead of something
like 1015, The default OPTIMALITY TOLERAKNCE of 10~® would need to be raised to about
1073 for optimality to be declared (at a rather suboptimal point). Of course, it is better to
revise the function coding to obtain a8 much precision 88 economically possible.

3. If function values arc obtained from an expensive iterative process, they may be accurate
te rather few significant figures, and gradients will probably oot be availabie. One should
specify

FUNCTION PRECISION 4

OPTIMALITY TOLERANCE /¢
but even then, if t is as large as 10~% or 108 (only 5 or 6 significant figures), the same exit
condition may occur. At present the only remedy is to increase the accuracy of the function
calculation.

10. EXIT =-- NUNMERICAL ERROR. GENERAL CONSTRAINTS CANNOT BE SATISFIED ACCURATZELY
An LU factorization of the basis has just been obtained and used to recompute the basic variables
Tg, given the present values of the superbasic and nonbasic variables. A single step of “iterative
refinement” has also been applied to increase the accuracy of zg. However, & tow check has
revealed that the resulting solution does not satisfy the current constraints Az + s = 0 sufficiently
well.

This probably means that the current basis is very ill-conditioned. Requesat the SCALE option
if there are any linear constraints and variables.

For certain highly structured basis matrices (notably those with band structure), a systematic
growth may occur in the factor U. Consult the description of UMAX, UMIN and GROWTH in section
6.2, and set the LU FACTOR TOLERANCE to 2.0 (or possibly even smailer, but not less than 1.0}.

1{. EXIT -- CAKNOT FIND SUPERBASIC TO REPLACE BASIC VARIABLE

If this exit occurs, the problem must be very badly scaled. A basic variable has reached a bound
and must be replaced, but none of the superbasic columns has a pivot clement exceeding the
PIVOT TOLERANCE. The latter could be reduced (at great risk). You should first try specifying
SCALE.

12. EXIT -- BASIS FACTCRIZATION REQUESTED TWICE IN A ROW

This exit may occur after the linesearch has terminated unsuccessfully several times in a row. It
is a saleguard to prevent the various recovery measurcs from being repealed cadlessly. It should
probably be treated aa il it were exit 9.

64 6. Output

If the following exits occur during the first basis factorization, the
basic variables zp will have certain default values that may not be
particularly meaningful, and the dual vector 7 will be zero. BASIS
files will be saved il requested, but certain values in the printed
solution will not be meaningful. The problem will be terminated,
even if the CYCLE LIMIT has nat yet beea reached.

20. EXIT -- NOT EROUGH STURAGE FOR THE BASIS FACTORIZATION
The main slorage array Z(+) is apparently not large enough for this problem. The routine
declaring Z is probably the main program. It should be recompiled with a larger dimension lor
Z. The new value should also be assigned to NWCORE.

In some cases it may be sufficient to increase the specified WORKSPACE (USER), if it is currently
less than WORKSPACE (TOTAL).

An estimate of the additional storage required is given in messages preceding the exit.

21. EXIT -- ERROR IN BASIS PACKAGE

A preceding message will describe the error in more detail. One such message says that the current
basis has more than one element in row 1 and column j. This could be caused by a corresponding
error in the MPS fle. (MINOS does not check for duplicate row names within each column.)
Determine the name of row 1 {e.g., by consuiting the i-th entry in the rows section of the printed
solution), and scan the COLUMNS section of the MPS file for that name, Alternatively, check
the (7 — {)-th variable in the COLUMNS saction of the MPS file, where { is the number of slack
variabtes in the basis,

22. EXIT -~ THE BASIS IS STRUCTURALLY SINGULAR AFTER TWQO FACTORIZATICN ATTEMPTS
This exit is highly unlikely to occur. The first factorization attempt will have found the basis
to be structurally or numericaily singular. [Some diagonals of the triangular matrix PUQ were
respectively zero or smalier than a certain tolerance.] The associated variables are replaced by
slacks and the modified basis is refactorized. The ensuing singularily must mean that the problem
is badly scaled, or the LU FACTOR TOLERANCE is too high.

If the following messages arise, the MPS file was read successfully.
However, either an OLD BASIS file could not be londed properly, o
some fatal system error has occurred. New BASIS liles cannol be
saved, and there iz no solution to print. The problem is abandoned.

30. EXIT -- THE BASIS FILE DIMENSIONS DO NOT MATCH THIS PROBLEM
On the first card of the OLD BASIS file, the dimensions labeiled M and N are differcat from those
associated with the MPS (ile that has just been read. You have prabably lnaded a file that belongs
to some other problem.

flemember, i you have added rows or columns to the MI'S Gle, you will have to alter ¥ and
N and the map beginning on the third card (a hazardous vperalion). {L may be easier to restari
with a PUNCH or DUMP file {rom the earlier version of the problem.

8.2 EXIT Conditions &9

3. EXIT -- THE BASIS FILE STATE VECTOR DOES NOT MATCH THIS PROBLEM
For some reason, the OLD BASIS file is incompatible with the present problem, or is not consistent
within itself. The number of basic entries in the state vector (i.e., the number of 3’s in the map} is

not the same as M on the frst card, or else some of the 2's in the map did not have a corresponding
§ z; entry following the map.

32. EXIT -- SYSTEM ERROR. WRONG NO. OF BASIC VARTABLES... nnn
This exit should never happen. If it does, something is seriously awry in the MINOS source code.
Perhaps the single- and double-precision files have been mixed up.

The following messages arise if the MPS file is seriously deficient, or
if additional storage is needed to allow the MPS (iie to be input or to
iallow optimization to begin. The problem is abandoned.

40. EXIT -- FATAL ERRORS IN THE MPS FILE
One of the following conditions exists:

1. There are no entries in the ROWS section.
2. There are no entries in the COLUMNS section.

3. A type N row has been selected to be the linear objective row, but it is one of the first my
rows, where m; ia the number of NONLINEAR CONSTRAINTS.

The first two conditions speak for themselves. [f condition 3 occurs, the N row may be have been
selected by default (if you did not specily any OBJECTIVE name in the SPECS file). To prevent
this, specify some other (possibly fictitious) row name. Otherwise, you must put the ¥ row after
the nonlinear row names in the ROWS section.

41. EXIT -- NOT ENQUGH STORAGE TO READ THE WP9 FILE
One of the ROWS, COLUMNS, or ELEMENTS estimates in the SPECS [ile proved to be too small. The
minimum (exact) values are shown in earlier messages. You must specify these values, or higher
valucs, and re-run the problem.

If the MPS data had been on a file of its own (rather than in the card input stream), MINOS
would have been able to continue by rewinding the MPS file and trying again.

42. EXIT -- NOT ENOUGH STORAGE TO START SOLVING THE PROBLEM

The MPS file was read succesfully, but the main storage array Z(+) is not large crough to provide
workspace for the optimisation procedure. Be surc that the SUPERBASICS LIMIT and HESSIAN
DIMENSION are not unreasonably large. Qtherwise, sec the advice given for exit 20.

70 8. Qutput

8.4 Solution Output

At the end of a runm, the final solution will be output to the PRINT file in accordance with the
SOLUTION xeyword. Some header information appears first to identify the problem and the final
state of the optimization procedure. A ROWS section and a COLUMNS sectian then follow,
giving one line of information for each row and column. The [ormat used is similar to that seen
in commercial systems, though there is no rigid industry standard.

ROWS Section

The general constraints take the form ! < f(z) + Ay < u, where = and y are the nonlinear and
linear variables respectively. The i-th constraint is therefore of the form

ag fYr)+aTy < 8,

and we define the i-th “row” to be the linearization of f%(z) + ay. For linear constraints, the
i-th row is just aTy.

Internally, the constraints take the form Lf{z) + Ay + & = 0 where Lf{z) is the current
linearization of f(z), and s is the set of slack variables (which happen to satisfly the bounds
-y < ¢ < ~{). For the i-th constraint it is the slack variable s, that is directly available, and it
is sometimes convenient to refer to its state,

Label Description

NUMBER The value n 4 i. This is the internal number used to refer to the i-th slack in the
iteration log.

ROW The name of the i-th row.

STATE The: state of the i-th row relative to the bounds a and 8. The various states

possible are as [ollows.
LL The row is at its lower limit, a.
UL The row is at its upper limit, 3.
EQ The row is equal to the RHS element, a = j.
BS The constraint is not binding. s is basic.
SB8 The constraint is not binding. s; is superbaaic.

A key is sometimes printed before the STATE to give some additional information
about the state of the slack vaciable,

A Alternative optimum possible, The siack is nonbasic, but its reduced gradient is
essentially sero. This means that il the slack were allowed to start moving away
from its bound, there would be no change in the value of the objective function.
The values of the basic and superbasic variables might change, giving a genuine
alternative solution. Flowever, if there are any degencrate variables (labelled D),
the actual change might prove to.be zcro, since one of them could encounter a
bound immediately. [n either case, the values of dual variables might also change.

D Degencrate. The slack is basic or superbasie, but it is equal to {or very close to)
one of its bounds.

6.4 Solution Qutput 71

ACTIVITY

Infeasible. The slack is basic or superbasic and it is currently violating one of its
bounds by more than the FEASTRILITY TOLERANCE.

Not precisely optimal. The siack is nonbasic or superbasic. [[the OPTIMALITY
TOLERANCE were tightened by a factor of 10 {e.g., if it were reduced from 1075 to
10~®), the solution would not be declared optimal because the reduced gradient
for the slack would not be considered negligible. (Il a loose tolerance has been

used, or if the run was terminated before optimalily, this key might be helpful in
deciding whether or not to restart the run.)

Note: Il SCALE is specified, the tests for assigning the A, D, I, N keys are made on
the scaled problem, since the keys are then more likely to he correct.

The row valuc; i.e., the value of aTy for linear constraints, or the value of the
linearization Lf*(z) + a7y if the constraint is nonlinear.

SLACK ACTIVITY The amount by which the row differs from its nearest bound. (For free rows,

it is taken to be minus the ACTIVITY.)

LOWER LIMIT «, the lower bound on the row.

UPPER LIMIT J3, the upper bound on the row.

DUAL ACTIVITY The value of the dual variable m,, often called the shadow price {or simplex

multiplier) for the i-th constraint. The full vector x always satisfies BTx = gp,

where B is the current basis matrix and g5 contains the associated gradients for
the current objectiive function.

If the solution is feasible, the first m; components of x are used at the start of the

k-th major iteration to define X, the estimate of the Lagrange multipliers for the
nonlinear constraints.

The constraint number, 1.

COLUMNS Section

ITere we talk about the “column variables” {z,y). For convenicnce we let the j-th component
of (z,y) be the variable z, and assume that it satisfies the bounds a £ z, £ 3. Linear and
nonlinear variables are treated the same.

Label
NUMBER

COLUMN
STATE

LL

EQ

Description

The column number, 5. This is the internal numbee uscd to refer to z; in the
iteration log.

The name of z;.

The state of z; relative to the bounds o and 3. The various states possiblc are as
{ollows.

zy i3 nonbaaic at its lower limit, «.
z; is nonbasic at its upper limit, 3.

z; is nonbasic and fixcd at the value a = 3.

73 6. Qutput

FR z; is nonbasic and currently zero, even though it is free o take any value. (Its
bounds are & = —o0, § = +00. Such variables are normally basic.)

BS =z, is basic.

SBS z; is superbasic.

A key is sometimes printed before the STATE to give some additional information
about the state of z;. The poasible keys are A, D, I and N. They have the same
mesaning as described above {for the ROWS sectian of the solution), but the words
“the slack” should be replaced by “z;”.

ACTIVITY The value of the variable z;.

0BJ GRADIENT g,, the j-th component of the combined linear and nonlinear objective function
F(z} + ¢To + dTy. (We define g; = 0 if the current solution is infeasible.}

LOWER LIMIT a, the lower bound on z;.
UPPER LIMIT g, the upper bound on =y,

REDUCED GRADNT The reduced gradient d; = g; — xTa;, where a; is the j-th column of the

constraint matrix (or the j-th column of the Jacobian at the start of the final
major iteration).

W+J The value m + j.

An example of the printed solution is given in chapter 8. Infinite UPPER and LOWER LIMITS
are output as the word NONE, Other real values are output with format F18.5. The maximum
record length is 111 characters, including the first {carriage-control) character.

Note: [f two problems are the same except that onc minimizes F{z) and the other maximizes
—F(z), their solutions will be the same but the signs of the dual variables x; and the reduced
gradients d, will be reversed,

8.5 SOLUTION Fila

If a positive SOLUTION FILE is specified, the information contained in a printed solution may
also be output to the relevant file (which may be the PRINT file if so desired}. Infinitc UPPER
and LOWER LIMITS appear as +£16°% rather than NONE. Qther real values ace output with forinat
1PE16.8. Again, the maximum record length is 111 characters, including what would be the
carriage-control character if the file were printed.

A SQLUTION file is intended to be read (rom disk by a self-contained program that cxtracts
and saves certain values as required for possible further computation. Typically the first 14
records would be ignored. Each subsequent record may be read using

FORMAT (I8, 2X, 2A4, 1X, Ai, 1X, A3, 5E18.8, I7)
adapted to suit the occasion. The end of the ROWS section is marked by a record that starts
with a 1 and is othorwise blank. If thia and the next 4 records are skipped, the COLUMNS

section can then be read under the same format. (There shouid be no need to usc any BACKSPACE
statements.)

6.6 SUMMARY File 73

6.8 SUMMARY File

I SUMMARY FILR [is specified with [> 0, certain briel informaticn will be output to fle /.
When MINOS is run interactively, (iie / will usuaily be the terminal. For batch jobs, a disk fle
should be used to retain a concise log of each run (if desired; a SUMMARY fie is more easily
perused than the associated PRINT éle).

A SUMMARY file (like the PRINT file) is not rewound after a problem has been processed. It
can therefore accumulata a log [or every problem in the SPECS fle, if each apecifies the same file,
The maximum record iength ia 72 characters, including a carriage-control character in column 1.

The following information is included:

1. The BEGIN card (rom the SPECS file.
2. The actual aumber of rows, columns and elementa in the MPS fle.
3. The basis file loaded, if any.

4. The status of the solution alier each basis factorization {whether fessible; the objective value;
the number of function calls so far).

5. The same information every k-th iterstion, wherqe k is the tpecified SUMMARY FREQUENCY
(default & = 100).

8. Warnings and error mesasges.

7. For nonlinear constraints, |2y 41 = Z&il, || Aus1 = Xs}| and the norm of the notlinear constraint
violation at the start of each major iteration.

8. The exit condition and a summary of the final solution.

Item 4 is preceded by a blank line, but item 5 ia nat. All items are illustrated in Figure 6.1, which
shows the SUMMARY file for the test peoblem MANNE, using SUNNARY FREQUEKCY 1.

MIMOS 5.1 (Jan 1987)

BESIN MANNETR
SCALE OFTION ¢
HAME MANNETS

ROMS ze
WO darning - ne linsar cbjsstive selecied
COLLMNS 3

ELEMENTS 5
000¢ Harnirng - the MHS iz Pere

WOt Total rw. of errors in NP8 Hile z

it FUNCON eots ? eut af 19 osomtraint sradients.
sut FUNORS sets 17 out of 20 chjesiive wradienis.
START OF MAJOR IT™ 1 PENALTY PARAMETER = 1.008-81

Cormtraint violatien = 0.0000E+00

Itn tMopt Ninf Sint,Objective Nob] Heon MSB

] - f +.00000000E~03 (1] 13]

2 -t ® 2.66982734E4N0 bt 23)
Optimal subproblem at minor itn 2 - Total {trm = H

T4

8. Output

STARY OF MAJOR [TH 2 PENALTY PARMETIR © 1.00K-8%
Cherme In Jesshn vars 0 33333892
Chonge in muliipliors ' . 84431408
Cormtrsint vielatlen =+ 9.17TI50-0

Multiplisr satinstes

. MMNTIHE-01 T 10ITINE-0 B.APTVGEEE-E1 T.9MNITE-4t T.IBR2M7VM-81

Itn Nepd Hint Sint.Chjeative deb] lMeen B
l =4 L.ev2evi‘ee L] n 7
- 9 L. .470NRt4M00 A Y] ¥

utl-l sbprebles st ainer (tn £ - Tolal itm v L]

START OF MAJOR IT™H 3 PENALTY PARAMETEN & 1.008-81
Charpe In Jasshn varg 8 1 47018-00
Change tn wultipliors = 1. 40008-62
Cormtraint vieleotion s 2. TNT0E-06

Multipline cationtiss

1.04160270%08 D .JM0R¢1IBE-0t O.47044058-01 7. AMRROEE-01 7.1E01340E-0t

COMPLETION PULL requested s frem rew.

ttn Nepd Mint Sint.Objestive lvhb:l L
s -1 o LT NN | 7 ¥
13] 9 LATHHANI'H “ 5 !
7] o L.eTENaRNI NS ™ (%] 7
[» LT ” e b
L [" L.07THAVPONEIR (3 v ?

Iin dept Nind Binf.Ohjestive Hebj Heen HES
'Il | 3 L.ATERYNTEIM " 7 ?

. 2 Z.ATHSTGTENGA 108 ”

MI-I whprebies at alrer 1tn 7 Tetal Hr- L 1"

START OF MAJOR ITH & PENALTY PARAIETIR = . 00k+00
Charge in Jooshn varg & 4. ERR10-0R
Chorge in sultipliors o 5.7¢51E-03
Corsiraint vielation = L.01 00808

Multiplior eatinates
1.010030MHE S MMM LAY 7MW TSI
1in Neptk Mind Binf.Dhjestive leki HNeen MNOB

e = 9§ L.07000%0E%A 118 103)
Optinal subprablen ot ainer itn 1 - Tetsl ttrm o 12

START OF YAJON ITH 8 PEHALTY PARANETER = S. 00800
Charme in Jaoshn varg & 4. 0V11E-04
Charme ' sultisliors = $.0070L-4T
Cormirsimt vielation 3 1.43588-1)

Multipiter sationtas

10106300000 9. J1035520-01 S.5MeANE-01 7.MIIME-N 7.30t00%020-01
DAT - JPTINAL SOLUTION PO
NEM SASTS FILE saved an file N Itne 12

Major, Mrer (a "
Ohjeative fuwiien L. onmlm:um
FUNOBJ, PUNCON ealls 143
Superbeaies. Here %68 'l' t.020-07

” (% - 1]] 7.60000

MNore X Hora

Coratraint vielation 1.0} 1. 9E=1%
selution printed

FOCOM salled nith MSTATE = 2

NSRS salled with NETATE = 2

-}
<

7. SYSTEM INFORMATION
7.1. Distribution Files

The MINOS source rode and test problems are distributed as a set of Fortran and data files.
» For installation instructions, please see file miminos.doc.
» Certain other *.doc files give information for specific machines.

¢ File readme lists changes not documented elsewhere,

Troubleshooting
If you encounter difficulty with compiling or linking, please check the following items. The Fortran
files are referred to here by names of the form #.for. (On Unix systems, they are renamed *.£.)

1. Most current machines require double-precision arithmetic. Check that the Foriran files use
appropriate declarations. For example, file mi0Cmain.for should contain the line

implicit double precision (a~h,o-z)

Singie precision is correct on a few machines (notably Cray and Convex). These use
implicit real {a-h,0-z)

throughout.

2. File miCOmain.for declares an array z{nwcore) for MINOS (o use as workspace. Make
nwcora as large as possible, bearing in mind the maximum problem size that is likely to be
encountered. Very roughly, linear programs with m rows may require nwcore > 100m.

3. File miOSfuns.for contains nonlinear function routines for the supplied test problems. Use
this file initially to run the test cases, but replace it later with your own functions.

4. On most machines, use file mii0unix.for. Check a few machine-dependencies in the fol-
lowing subroutines. The requirements are described in the source code.
miopen opens files.
miinit sets the machine precision, eps. Typically 2752 = 2.22d-16 in [EEE arithmetic.
micpu calls the system timer. On some Unix systems, the timer is etime. If the name is
unknown, set time = -1.0 as shown in the source code.

5. For DEC OpenVMS systems, use file mi10vms.for. All machine-dependent subroutines are
ready to go. In addition, minoa2 uses dynamic memary allocation.

6. In file mi35inpt.for, subroutine m3hash is suitable for most machines. In rare cases it may
reed to be altered if MPS data files are not input correctly. Again, the requirements are
described in the source code.

78

7.2. Source Files

The Fortran source code is divided into several files, each containing several subroutines or func-
tions. The naming convention used should minimize the risk of a clash with user-written routines.

ni00nain.for Main program for Stand-alone MINOS.
Program MINOS

miC5funs . for Function routines for test problems.
funobj funcon matmod
t2o0bj t3obj tdobj t4con tHobj técom tTobj

milQunix.for Machine-dependent routines. {Usc milQvms. for for OpenVMS.)
minoss minosl minos2 minosd
mifile mispec misolr
miclos mlenvt mliinit
mjopen mipage mitime mitimp micpu

milbblas.for Basic Linear Algebra Subprograms (a subset).
dasun daxpy dcopy ddot dnrm2 dscal idamax
These routines are membera of the Level 1 BLAS (Lawson, et al., 1979). It may be possible to replace
them by versions that have been tuned to your particulaz machice.

Single-precision versions of MINOS use sasum, saxpy, <tc.

dddiv ddsel dload dnormi

hecopy hlocad icopy ileced iloadl

These are additional utility rouiines that could be tuned to your machine. dload is used the most,
to set a vector to zero.

miz0amat.for Core allocation and constzaint matrix routines.
m2core m2amat wm2aprd m2apri mlaprs
m2crsh m2scal al2scla m2unpk matcol

mi2bbfac.for Basis factorization routines.
n2bfac m2bmap m2bslm m2bsol m2aing
luifac luifad luigau luimar lulpen
luimax luiori luler2 1luler3 lulord
luipgl luipq2 luipqd 1luirec
lu6chk 1lufsol lu7add luTelm la7for 1lu7zap 1luBrpc

mi30spec.for SPECS file input.
miopt miopti mioptr =michar m3dflt m3key
n3file oplook opnumb opscan optokn OpUppr

nid5inpt.tox MPS file inpus.
n3getp m3hash m3imov
n3inpt w3mpsa mdnpst m3mpsc m3read

mi40bfil.for BASIS file input/output and SOLUTION printing.
migetd méchek mbid néname mdinst xiload mdoldb
mésavb mddump ndnewb adpnch mdre ndints
mirept méscoln misclp mistat

mi50lp.for Primal simplex method.
n6bax uSchzr mBdgen mbirmc mEhs mElog =blpit
nbpric mbre nE5setp mbsetx m530lY

7. SYSTEM INFORMATION 77

ri60srch.?or Linesearch and function evaluation.
nédmmy néfcon méfobj pmBfun méfunl =bgrd adgrdl
médobj médcon mSsrch srche srchq

ni8Srmed.for Maintaining the quasi-Newton factor R
mébfgs =mébswvp méradd wmérend mérdel
méreoed mérset adrscl méswap

ni70nebj.2or Nonlinear objective; reduced-gradiem algorithm,
n7bsg m7chkd @7chkg m7chzq =7fixd
alrg a7rgit a7sdir aTsscv

wmif0ncen.for Nonlinear consiraints; projected Lagrangian algorithm.
mBajac mSaugl mBangl m8chkj m8prtj mBeclj
n8setj m8viol

ainoxl.zrox For ingtallations solving linear programs only.
Program MINOSL
funobj funcon etc. (dummy entries)

The last file minosl.for is included as a substitute for files mi0Omain.for, mi60srch. for,
niéSrmod.for, miTOnobj.for, mi8Oncon.for, if MINOS is to be used to solve linear programs
only. It reduces the compiled code size by about 100K bytes. It ia recommended for use on
microcomputers and machines that do not have virtual memory.

7.3. COMMON Blocks

Certain Fortran COMMON blocks are used in the MINOS source code to communicate between
subroutines. Their names are listed below.

nlenv nisps alfile misavz mitim nivord

m2file m2len m2lul nilu2 »2113 n2iué R2mapa mZmapz
m2parn

#3len uilac m3npsi mINps2 m3nps3 w3mpsd n3mpsb m3scal
m5len mblec nStreq abint mBlobj mblogl mElog2 mblog3d
m5logs mSlpl nblp2 REPIC mbstap mbtols

m7len m7loc a7cgl afcg2 m7conv m7phes m7tols

m8len milcc nBall a8al2 m8dif? wmSfunc m@save miveri
cyclel cyclal cyclem

A complete listing of the COMMON blocks and their contents appears in subroutine minos3. (Also
see Section 2.6.) It may be convenient to make use of these occasionally: for example,

common /mifile/ iread,iprint,isumm
gives the unit numbers for the PRINT file and the SUMMARY file.

As supplied, MINOS does not use blank COMMON. However, in some installations it may be
desirable to store the workspace array Z there.

Revision

Pages 78-81 are intentionally omitted in this version of the manual.

52

7.5. Subroutine Structure

The following picture illustrates the top levels of the subroutine hierarchy for Stand-alone MINQS
and ‘or user programs that call subroutine minoss.

MIROS USER
main program main program
|
minosi mispec
minoss
I
minos2
]
minos3
1
m3dfie n3dflt
m3inpt
misoly nisoly
F J
1
négeth
mataod
n8chkj
n7chkg
m4chak
aEsoly
1
nbdgen
aBsetj
aZbfac
ubtne
absetp
mbpric
mblpit
nTrgiv
mbserx
ndnewd

1. For Stand-alone MINOS, minosi reads the SPECS file. For each bagin—end sequence found,
it allocates storage and calls minos2.

2. In some implementations (e.g. file mil0vms.for), minos2 expands the work array 2(*} if
necessary. It then calls minos3 to finish processing the current problem.

3. minos3 reads an MPS file, loads a basis file (if any), and checks gradients. According to the
Cycle limit, it then solves one or more related problems.

4. For User programs, mispec reads a SPECS file (if any). It must be called before minoss,
even if no SPECS file is provided.

7.8 Test Problems 83

7.8 Test Problems

Test Problem MANNE

This is a small example of an economic model due to Manne (1379). [t has a nonlinear objective
function, 10 nonlinear conatraints, 10 linear constraints, and 30 variables. The nonlinearities are
defined by the default function routines FUNOBJ and FUNCOXN in the MINOS source code, The
starting point given in the MPS file is intentionally close to the optimum solution, to make this
an inexpensive test problem. Other values in the INITIAL bounds set can be tried.

As supplied, FUNOBJ and FUNCON compute all gradients analytically if the SPECS file specifies
DERIVATIVE LEVEL 3. For test purposes, the first three nonzero gradients in each routine are nat
computed if DERIVATIVE LEVEL = 0. We give a summary of the output produced by MINOS for
the latter case. A [full listing appears in section 8.4,

For this and [ater examples, the results were obtained on an [BM 3081 using the Fortran H
Extended {Linhanced) compiler with optimization level OPT=3,

Maximum objective vailue: 2.87009603
Iterations to get Feasible: 1

Total iterations: 14

Major iterations: 3
Evalustions of F{z) and its zradieat: N
Evaluations of f{z) and its Jacobian: 24

Mumber of superbasies at optimum: 1

CPU time (fBM 3081): 0.3 seconds

The Weapon Assignment Problem, WEAPON

This problem has a nonilinear objective function and linear constraints. {t is deseribed by Bracken
and McCormick (1969) and Himmelblau (1972). The constraint matrix is 12 X 100 and all 100
variables occur nonlinearly in the objective function F(z). The lalter depends on 12 data cards
which are read during the first entry Lo subroutine FUNOBJ.

The following are some solution statistica, obluined by MINOS on an IBM 3081 as notcd
above. They give an indication of the cllort required Lo solve the problem. lowever, one should
not expect to obtain identical resuits on some other machine.

Minimum objective value: —1735.56958
Iterations to get {easible: 3

Total iterations: 120
Evaluations of #{z) and its gradient: 270

Number of superbasics at optimum: 18

CPU time (IBM 3081): 2 seconds

84 7. System [nformation

Test Problem ETAMACRO (finear version)

This i3 one exampie of the energy mode! developed by Manne (1977). The constraint matrix is
401 X 689. To obtain a linear problem, we have included one linear objective row QPTIMALG in
the MPS file. The latter also contains one right-hand-side vector RH500001, and one bounds set
BOUNDEO1.

The objective row CPTIMALG contains the optimal gradient values for the 80 nonlinear vari-
ables in the criginal {nenlinear) form of ETAMACRO. tence the linear version of the problem has
the same optimal dual variables x as the nonlinear version (but rather different primal variables
z).

The file ETAMACRG SPECS is set up to solve this linear program first. It asks for the linear
variables and constraints to be scaled. {Note that it also asks for a BASIS map to be saved on

unit 11 every 100 iterations. This may be used as a starting basis for the nonlinear version of the
problem.)

Typical solution statiatics follow.

Maximum objective value: 755.715213
Iterations to get feasible: 240
Total iterations: 904
CPU time (IBM 3081): 15 seconds

Test Problem ETAMACRO (nonlinear version)

The objective function lor the original form of the energy model is entirely nonlinear, and involves
the first 80 variables. It is defined by subroutine FUNOBJ in file ETARACRO FORTRAN. It dependa
on 3 data cards which are included at the end of file ETAMACRO SPECS and are read during the
first entry to FUNOBJ.

The MPS file doca not initialize any of the nonlinear variables. When started from the optimal
solution to the preceding linear problem, typical solution statistics (with scaling requested) are
as [ollows.

Maximum objective value: 1337.72468
Iterations to get feasible: 0

Total iterations: 235
Evaiuations of F(z) and its gradient: 444
Number of superbasics at optimum: 28

CPU time (IBM 3081}): 7 seconds

From a cold start, with and without scaling, typical statistics are as [ollows.

SCALE YES SCALE NO
Maximum objective value: 1337.72468 1337.72468
[terations to get feasible: 235 213
Total iterations: 1022 1287
Evaluations of #(r) and its gradient: 1271 1554
Number of superbasics at optimum: 28 28
CPU time (IBM 3081): 21 seconds 26 seconds

7.6 Test Problems 8k

8. EXAMPLES

The following sections define some example problerns and show the input required to solve them
using MINOS. The iast example in section 8.4 is test problem MANNE as supplied on the
distribution tape. For this example we also give the output produced by MINOS.

As the examples show, certain Fortran routines may be required to run a particular problem,
depending on the problem and an the Fortran instaliation:
e A main program to allocate workspace
¢ Subroutine FUNQCBJ to define a nonlinear objective function (i any)
¢ Subroutine FUNCON to define nonlinear constraint functions (if any)
¢ Subroutine MATMOD for special applications

The following input items are always required:

+ A SPECS file
» An MPS file

Additional input may include a BASIS file and dat.a.-read by the Fortran routines.

Load modules and file specifications are inevitably machine-dependent. A resident expert
will be needed to install MINOS on your particular machine and to recommend job control or
operating system commands. On some machines it will be possibie to run linear programs through
MINOS without compiling any routines or linking them to the MINOS code file. For nonlinear
problems, some compilation and linking is unavoidable,

For some installations it may also be convenient to have your own copy of subroutine MIFILE,
to define certain file attributes in {non-standard) Fortran, rather than via operating system
commands. The resident expert will know best.

Good luck! We hope the exampies that follow are general enough Lo set you on the right
track.

86 8. Examples

8.1 Linsar Programming

One of the classical applications of the simplex methad was to the so-called diet prodlem. Civen
the nutritional content of a selection of foods, the coat of each food, and the consumer's minimum
daily requirements, tae problem is to find the combination that is least expensive. The following
example ia taken from Chvital (1983).

T

minimize ¢’z subject to Az > b, 0< 7z < u,
where
110 205 180 160 420 260 2000
A=(4 32 13 8 4 14), b=(55),
2 12 54 285 22 80 800
and

e=(3 2¢ 13 9 20 19)T, wu=(¢ 3 2 8 2 2)"

Main program (not needed for some installations)
DOUBLE PRECISION Z(10000)

DATA NWCGORE/ 10000/
c

CALL MINOS1({ Z,NWCORE)

STor

END

Dummy user routines (not needed for some installations}

SUBRQUTINE FUNOBJ
ENTRY FUNCON
ENTRY MATNOD
RETURM

END

SPECS File

BEGIN DIET PRGBLEM
MININIZE
ROWS
COLUMNS
ELEMENTS

288

SUMMARY FILE

SUMWARY FREQUENCY

NEW BASIS FILE i
END DIET PROBLEM

- O

* (for small probleas only)

-

8.1 Linear Programming

87

MPS File

NAME
ROWS
G ENERGY
G PROTEIN
G CALCIUM
N CO8T
COLUMNS
OATMEAL
CATMEAL
CHICKEN
CHICKEN
EGGS
EGGS
MILK
MILK
PIE
PIE
PORXBEAN
PORKBEAN
RHS
DEMANDS
DEMANDS
BOUNDS
UP SERVINGS
UP SERVINGS
UP SERVINGS
UP SERVINGS
UP SERVINGS
UP SERVINGS
ENDATA

DIET

ENERGY
CALCIUM
ENERGY
CALCIUNM
ENERGY
CALCIUM
ENERGY
CALCIUM
ENERGY
CALCIUM
ENERGY
CALCIUM

ENERGY
CALCIUM

OATMEAL
CHICKEN
EGGS
MILK

PIE
PORKEEAN

Notes on the Diet Problem

110.0
2.0
205.0

160,

54.
180,
285,
420,

22.
200.

Do0O00CDOOO

2000,

g

N R W
00000

PROTREIN
CO8T
PROTEIN
COST
PROTEIN
cost
PROTEIN
Cas8T
PROTEIXN
COsT
PROTELIN
CosT

PROTEIN

»w W

-

[}
aoopomwwﬁnuf

D000 0DOO00OOO0R

-

[]
(-]
(=]

1. For small problems such as this, the SPECS file does not really need to specify certain

parameters, because the default values are large enough. However, we include them as a
reminder for more substantial models.

2. [n the MPS file we put the objective row last. Looking ahead, this is onc way of cnsuring
that it does not get mixed up with nonlinear constraints, whose names must appear first in

the ROWS section.

3. The constraint matrix i2 unusual in being 100% dense. Most models have at least a few
teros in cach column and in 6. They would not need to appear in the COLUMNS and RHS

sections.

4. MINOS takes three itcrations to solve the problem. The optimal objective is eTz = 92.5.

The optimal selution is z == (4, 0, 0, 4.5, 2, 0)7 and s = (0, -5, -534.5)7. The uptlimal

dual variables are * = {0.05625, 0, 0)T.

a8 8. Examples

8.2 Unconstrained Optimization
The following is a classical unconstrained problem, due to Rosenbrock (1960):
minimize F(z) = 100{zq — z3)? + (1 —).
We use it to illustrate the data required to minimize a function with no general constraints.

Bounds on the variables are easily included; we specifly —10 < z; < 5 and —10 < z¢3 < 10.

Calculation of F(z) and its gradients

SUBROUTINE FUNOBJ(MODE, N, X, F, G, NSTATE, NPROB, Z, NWCORE)
IMPLICIT REAL#8 (A-H,0-2)
DOUBLE PRECISION X(N), G(N), Z(NWCORE)

¢

¢ ROSENBROCK'S BANANA FUNCTION.

c
X1 a X(1)
X2 * X(2)
T1 a X2 - Xise2
T2 = 1.0 ~-X3
F = 100.0 » Tis»2 + T2»2
c(1) = - 400.0 =« TL » X1 - 2.0 = T2
G(2) = 200.0 * Tt
RETURN

c

c END OF FUNOBJ FOR ROSENBROCK
END

SPECS Fils

BEGIN ROSENBROCK
DBJECTIVE = FUNOBJS
NONLIKEAR VARIABLES 1
SUPERBASICS LIMIT 3

LOVER BOUND -10.0
UPPER BOUND 10.0
SUMMARY FILE 9

SUMMARY FREQUENCY 1
ITERATIONS LIMIT 50
END ROSENBRCCK

8.2 Uncoastrained Optimization a9

MPS File

NANE ROSENBROCK
ROWS
N DUMMYROW
COLUMNS
X1
X2
RHS
BOUNDS
UP BOUND1 X1
FX INITIAL X1 -1.
FX INITIAL X2
ENDATA

- o
ox o

Notss on Rossnbrock’s funetion

L.

10.

There is nothing special about subroutine FUNOBJ. It returns the function value F{z) and
two gradient values g; = 3F/3z, on every entry. If G(1) or G(2) were not assigned values,
MINOS would “notice” and proceed to estimate cither or both by finite differences.

. The SPECS fle apparently does not need to estimate the dimensions of the constraint matrix

A, which is supposed to be void anyway. But in fact, MINOS will represent A as a [X n;
matrix containing n; elements that are all zerc. For very large unconstrained problems, the
COLUMNS and ELEMENTS keywords must be specified accordingly.

The SPECS file must specify the exact number of nonlinear variables, ny. To allow a fittle
etbow room, the SUPERBASICS LIMIT must be set to ny + 1, unless it is known that some of
the bounds will be active at the selution.

. The MPS file must specily at least one row. Here it is & dummy {ree row (type ¥ = non-

binding constraint). The basis matrix will remain B = 1 throughout, corresponding to the
slack variable on the lree row.

. The COLUMNS section contains just a list of the variable names. The RHS header card

must appear, but a {ree row has no right-hand-side entry.

. Uniform bounds —10 < z; < 10 are specified in the SPECS file as a matter of good practice.

Their presence does not imply additional work. If the LOWER and UPPER BOUND keywords did
not appear, the variables would implicitly have the bounds 0 £ z; < oo, which will not
always be appropriate.

. With the uniform bounds specified, only one additional card is necded in the BOUNDS scction

to impose the reatriction z; < §.

. The INITIAL bound set illustrates how the starting point (z4,za) = (—1.2,1.0) is specilied.

These cards must appear at the end of the BOUNDS section. Since the SUPERBASICS LIMIT
is sufficiently high, both variables will initially be superbasic at the indicated valuea.

. If the INITIAL bound set were absent (and if no BASIS file were loaded), z; and z3 would

initiafly be nonbasic at the bound that is smaiier in absolute value {with tiea broken in fuvor
of lower bounds); in this case, zy = uy = § and z3 = {3 = —10.

Froem the standard starting point shown, a quasi-Newton method with a moderately accurate
lincsearch takes about 20 iterativns and 80 function and gradient cvaluations to rcach the

‘unique solution £y = zp = 1.0,

%0 8. Examples

8.3 Linearly Constrained Optimization

Quadratic programming (QP) is a particular case of linearly conslrained optimization, in which
the objective function F(z} includes linear and quadratic terms. There is no special way of
informing MINOS thar (z) is quadratic, but the algorithms in MINOS will tead to perform more
efficiently on quadratics than on other nonlinear functions. The following items are required to
solve the quadratic program

minimize F(z)} = %ZTQZ +c'z subject to Az <)b, z20

for the particular data
4 2 2 —8
Q==(2 4 {)), c=(—6), A=(11 2), b=3.
2 0 2 —4

Calculation of quadratic term and its gradients

SUBROUTINE FUNOBJ(MODE, N, X, F, G, NSTATE, NPROB, Z, NWCORE)
IMPLICIT REAL+8 {A-H,0-2)

DOUBLE PRECISION X(N), G(N), Z(NWCORR)

COMMON /QPCOMM/ Q(50,50)

c
c Computation of F = 1/2 x'Qx, g = Qx.
c The COMMON statement and subroutine SETQ are probleam dependent.
c
c
IF (NSTATE .EQ. 1) CALL SETQ(Q, 50, N)
F = 0.0
¢

DO200 I =1. N
GRAD = 0.0
DO 100 J =1, N
GRAD = GRAD + Q(I . J)+X(D
100 CONTINUE
F = F + X(I)*GRAD

G(I) = GRAD
200 CONTINUE
c
F 2 Q.5»F
RETURN
c

¢ END OF FUNOBJ FOR QP
END

8.3 Linearly Coopstrained Optimization 91

SPECS File

BEGIN QP
NONLINEAR VARIABLES 3
SUPERBASICY LIMIT 3
SUMMARY FILE 9
SUMMARY FREQUENCY 1
ITERATIONS LIMIT 5Q

END QP

MPS File

NAME QP

ROWS

L A

N ¢

COLUMNS
X1 A 1.9 ¢ -8.0
X2 A 1.0 o} -8.0
X3 A 2.0 ¢ -4.0

RHS
R A 1.0

ENDATA

Notes on the QP example

1.

[n subroutine FUNOBJ we assume that the array Q(s,») is initialized during the first entry
by another subroutine SETQ, which is problem-dependent. The COMMON statement is also
probiem-dependent and is included to ensure that @ will retain its values for later entrics. {In
some Fortran implementations, iocal variables are not retained between entries.)

. The quadratic form will often involve only some of the variables. In such cases the variables

should be ordered so that the nonzero rows and columns of @ come first, thus:

-)

. The parameter N and the number of NONLINEAR VARIABLES would then be the dimension of

. FUNOBJ could have computed the linear term ¢Tz (and its gradient ¢). However we have

included ¢ as an objective row in the MPS [ile, in the same manner as {ar linear programs.
This is more general, because ¢ could contain entries for all variables, not just those associated
with §.

. Beware—if ¢ 3£ 0), the factor § makea a vital difference to the function being minimited.
. The optimal solution to the QP problem as stated is

z = (1.3333,0.77777, 0.44444), %zTQ:c = 8.2222, cTz = —17.111 F(z} = —8.8888.

. 8. Exampies

Test Problems WEAPON snd ETAMACRO

The MINOS distribution tape contains data for these two linearly constrained problems. The
SPECS file for ETAMACRO is aa follows. It is set up to sclve a linear form of the problem first,
and then use the optimal basis as & starting point for the nonlinesr form.

SISIN CETAMACRO AS AN LP PROBLEN.

RAINIZE

OBJICTIVE = OPFTIMALS

RONY 508
CoOUNS 100
ELEMENTS un
SUMARY FILE ’
NP3 FILE 1¢
HEM BASIS FlILX 1"
SCALE Tes
ITERATIONS 1000

1,]

BESIN ALAN MANNE'S ENEWEY MODEL ETAMACRO
HAXINIZY
OBJECTIVE = FUNDBY

ROWS 540
COLMNE 790
ELEMRNTS ({11
FMPURY FILE *
s FILL 1o
oL BASTS FILE "
NEW BASIS FILE 1t
NONLINEAR YARIABLES L
SUPERBASICS LIMIT 9
WALE s
ITERATIONS 2008

»

® HOTE -—- AFTER THIG SPECS FILE THERE ARE 3 CAARS OF OATA.
* 7O BE MEAD OM THE FIRST EMTRY TO SUBROUTINE FUNDB..
IND

1.169 1.44% 1.7 L.439 .344 3.om .50

" “
3.073 .27 4. 5.213 $.795 .33 T.016 1.74
10.000 0.200 9.400 9.33330 0Q.e00

Linear Least Squeres
Data-fitting can give rise to & constrained linear least-squares problem of the form

minimise [[X3-ylls subjectto Az > (<z<w

This problem may be soived with MINOS as it stands, by coding subroutine FUNOBJ to compute
the objective function F(z) = }||Xz — ||} and its gradient g{z) = XT[Xz - y). If X is a sparse
matrix, it may be more convenient to express the problem in the form

s 1 : 1 X)(?)’(t) fi 1€2<u
minimise F(r) = T subject to (Ne)=2\) r free, 1S2z%

8.3 Linearly Conatrained Optimization 93

Notes on the lsast-squares probiem

1. Aa usual, the constraints in Az > b may include all types of inequality.

2, r =y — Xz is the residual vector and r7r is the sum of squares.

3. The objective function is easily programmed as F(r) = :}rTr and gir) =r.

4. More stable methods are known for the least-squares problem. If there are no conatraints at
all, several codes are available for minimizing || Xz — yl|; when X is either dense or sparse.
When there are equality conatraints oniy (Az = b), we know of one specialized method that
can treat X and A as sparse matrices (Bjorck and Duff, 1980). For the more general case
with inequalities and bounds, MINOS is one of very few systems that could attempt to solve
problems in which X and A are sparse. However, il n (the dimension of z) is very large,
MINOS will not be efficient unless almost n constraints and bounds are active at the solution.

5. Il it is expected that most of the elements of z will be away from their bounds, it will be
worthwhile to specify MULTIPLE PRICE 10 (say). This will allow up to 10 variables at a time
to be added to the set currently being optimized, instead of the usual 1.

The Discrste {, Problem

An apparently similar data-fitting problem is
minimize || X2 —ylly subjectto Az 2> b

where {|rll; =) |r:i|- However, this problem is best solved by means of the lollowing purely
linear program:
ma.:.imi:e ka + 8Ty
» b

subjectto XTh+ATu=0, -1<N<1l, u>0

Notes on the {; problem

1. The solution z is recovered as the dual variables, i.c., the Lagrange multipliers associaled
with the general constraints.

2. The optimal value of || Xz — y|l, is the sum of the absolute values of the reduced cosis
associated with X. (It is also the maximal value of 3T\ + bTp.)

3. If a particular row in Az > b is required to be an cquality conatraint, the corrcsponding
component of 4 should be a free variable.

4. It does not appear simple to include the bounds ! < z < u cxcept as part of Az > b IT
there are many finite bounds, it may be best ta solve the original problen directly as a lincar
program, thus:

minimize eTr+ele
re

bject to Lo) r,s20, I<z<y
B ([=1 X)(:c)= v

where eT = (1 1...1).

o4

8. Examples

8.4 Nonlinearly Constrained Optimization

Two example problems are described here to ilfustrate the subroutines and data required to specify
a problem with nonlinear constraints. The first example i3 small, dense and highty nonlinear; it
shows how the Jacobian matrix may be handled most simply (as a dense matrix) when theee are
very few nonlinear constraints or variables. The second example has hoth linear and nonlinear

constraints, and illustrates most of the features that will be present in large-scale applications
where it i3 essential to treat the Jacobian as a sparse matrix.

Problem MHW{D (Wright (1978), example 4, starting point D}

minimize (2 — 1)% + (23 = z2) + (22 — 23)" + (23 = 2}* + (24 — 75)*

subject to =z, + 23 + 2} = 3vV2Z +1,
zg-z§+n=2\/§-2,

TLZy = 2.

Starting point: g =(—-1,2,1,~2,-1)

Notes for problem MHWAD

1.

2.

3

-

The function subroutines include code for a second problem (Wright, 1978, example 9). The
patameter NPROB is used to branch to the appropriate calculation.

In subroutine FUNUBJ, F is the value of the objective function F(z) and G contains the
corrcsponding & partial derivatives.

In subroutine FUNCON, F is an array containing the vector of constraint functions f{z}, and
G holds the Jacobian matrix; thus, the i-th row of G contains the partial derivatives for the
i-th conatraint. In this example the Jacobian is best treated as a dense matrix, so G is a
two-dimensional array. Note that several elements of G are zero; they do not need Lo be
explicitly set.

. Subroutine FUNCON will be called before subroutine FUNOBJ. The parameter NSTATE is used

to print a message on the very first entry to FUNCON. This is just a matter of good practice,
since it is often convenient to compile MINOS and the function routines into an executable
code file, and one can easily forget which particular function routines were used.

The SPECS file shown containa keywords that should in general be specified for small, dense
problems {i.e., ones whose default values would not be ideal).

. The COLUMNS section of the MPS file contains oniy the names of the variables, since they

are al! “nonlinear”, and becausa there are no linear constrainta.

. The BOUNDS section specifies only the initial point. Uniform bounds on the variables are

given in the SPECS file,

. Since FX indicators are used for the INITIAL bounds, the SUPERBASICS LIMIT needs to be at

least 5 in this case, plus 1 for elbow room during the optimization,

. This cxample has several local minima, and the perfarmance of MINOS is very dependent on

the initial point zg. See Wright (1976) or Murtagh and Saunders (1982) for computationat
details.

8.4 Nonlinearly Constrained Optimisation

%

Problem MHW4{D; computation of the objective function

0oo00

aono

SUBROUTINE FUNDBJC MODE,N:X:17,8:NSTATE ,NPROB, Z, MICORE)
IMPLICIT REALLA-H,0-2)

ooUBLE
"l 4

PRECISION XIN),BINI,Z{NNCORE)

IF (NFROB .NL. &) 90 TO S
TP = Xi1) - 1.0

T2

Th

r =
6l1) =
ezl =
$i3) =
B(4e) =
s =
RETURM

L

T =
T2 =
r z
1

MHid =
8l(2) =
t

6(3) 2
Bia) =
8{9) a
RETURN

0no o
END

X(3) - X&)
TS 1 Xis) ~

= K(1) = X(2)
T3 ® X(g2)
=

X3
xE)

TINng & TIuag & TIMME ¢+ Taung + THang
2.0MT1 4 T2}
-2.0#T3 ¢ 3.2nTIwng
=3.04TINNE ¢ 4 JNT4NN]
-4, 0nT4aN] ¢ 4 guTRn3
-4, 0%TSun} '

OSINIX{E) - X(3)}

DCORINIS) =« N3]}

10.08X(1 aXI4) ¢ XIT1)MIZ 0 X(2) - §.0NXI2)mE & XI3)
* 9,007y ¢ X(21enl ¥ N(a)nal & X(5)04

10.08X(4) * 3. oux(1)iwng ¥ X(2)

Xit)ung o 12 .0sX(EInX(3)

¢ 3.0WX(ZIMNE % X(A)NE B X(5)4

~6.08X12)88 ~ 9.00T2

10.09X(1) + 2.0uX(2)Hn3 # X(4) # X(§}inag

9.00TE ¢ A, 0uX(2)an) » X(h)uad # X(§)mn}

FUNDB) FOR MRMANDY

% 8. Examples

Problem MHWA4D; tomputation of the constraint functions

SUBROUTTINE FUNCON(MOOE M N NJAC X P 8 . NITATE .NPROB, Z, NNCORE)

IMALICIT REALNG AN, -2}
OOUBLE PRECISION XINI,FIM),8{M:N),Z[NNCORE)
[+
tc: N
IF (NSTATE .ZQ. 1) MRIYE(4: 19090) NPROD
IF (NFROB .NE.) 00 TO 309
FU1) = X(1) & X(L)eug * XK{3J)wn}
er1.9) = 1.0
81,21 = 2,0u%(2)
81,32 3 3. 00X(3)ung
€
F(ZE = X(R) = XC3)uwg * Xt4)
B2y » 1.0
$(L2)3) = =2.3aXI 3}
S, & 1.0
c
Fi3) = X1))%%(9)
(3. 1) = X($)
3,8 = X(1)
RETURN
14
g Y
08 Fi 1) 2 X(1)nug & X(2)MET & X{J)uuE & N4 IaR * X1GIENR
Y1) 2 2. 0xtY)
GIt,2) =» 2. 0WK(2)
SLY,3) = 2.0W03)
GlL1,4) 2 2, 00X1H)
$1,5) = L.99XLD)
1
FIE) o XE1ImnEwxt3) ¢ XTA)WX(E)
S(Z,1) = Z.0mX1) ML)
S(E,3) = X{1)innd
BZ.8) = X(5)
SLL,) = X&)
[+
FtS) = X(LyempuX({4) + 19.09%(1)w13)
1) & 16,9915}
03,2} 8 L. .aEX(2INXiA)
1 5,4} = Xi2)end
935 = 14.0X(1)}
ALTURN

c
1099 FORMATL/ I4H THIS IS PROBLEM IMSMNGANDS. NPROB @, I3}
¢ END OF FUNCON FOR MIMANDY
oo

8.4 Noalineariy Constrained Optimisation

L1

Problem MHW4D; the SPECS file

BEGIN M 4
PROBLEM MMBER »
NONLINEAR CONSTRAINTS 3
HONLINEAR VARIABLIS $

JACOBIAN DENSE
UPPER BOUND 3.0
LOWNER BOLMND -5.9
SUMARY FILE ’
ITERATIONS 199
HAJOR ITEWNATIONS i
AINOR ITIRATIONS "
PENALTY PARAMETEN 1.0
SUPFRRASICE 1 IMIT 4
PRINT LEVEL (JFLXB) 17
YERIPY LEVEL e
0D 1 &

Problem MHWA4D; the MPS file

N ol 40
ROKS
£ CON3
€ coM2
I COM3
CatiMNs
x1
X2
x3
X8
L |
ne
ms co $.24203
e cone 0.82042
i CoN3 t.0
SOUNDS
FX INITIAL Xt -1.0
X INITIAL %2 .9
FX INITIAL X3 1.9
FX INITIAL X& -t£.9
Fx INITIAL X9 -£.0

98

8. Exampies

Problem MANNE (Manne, 1979)

T
maximize Z B log C,

taml
subject to a,Kf >C+ Ly 1<¢LT, (nonlincar constraints)
Kyt Ko+ L, 1€t T-1, (linear constraints)

gKr < Ity

with vatious ranges and bounds.

The variables here are K, C: and [;, representing capital, consumption and investment during
T time periods. The first T constraints are nonlincar because the variables K, are raised to the
power 4 = 0.25. The problem is described more fully in Murtagh and Saunders (1982), where
results are given {or the case T = 100.

The main program and subroutines shown on the following pages are part of the file HEAD1

on the MINOS distribution tape (sce sections 7.1 and 7.4). The SPECS data and MPS-data are
contained in the file MANNE DATA; they apply to the case T = 10.

Notes for problem MANNE

1.

For efficiency, the Jacobian variables K are made the first T components of z, followed by
the objective variables C,. Since the objective does nat involve K, subroutine FUNOCBJ must
set the first T components of the objective gradient to zero. The parameter N will have the
value 27, Verification of the objective gradients may as well start at variable T + 1.

. For subroutine FUNCON, N will be T. The Jacobian matrix is particularly simpie in this

example; in fact J(z) has only one nonsero element per column (i.e., il is diagonat). The
patatheter NJAC will therefora be T also. It is used only to dimension the array G.

. NSTATE enables B, AT and BT to be initialized on the first entry Lo FUNCON, for subsequent use

in both of the function subroutines. (Remember that the first call to FUNCON occurs before the
first cal! to FUNOBJ.) The name chosen for the labeled COMMON block holding these quantities
must be different from the other COMMON names used by MINOS, as listed in section 7.3.

4. NSTATE is also used to produce some output on the final call to FUNCON.
5. The COMMON block MAFILE is one of those used by MINQS; sce section 1.6. 'or test purposes

we also use COMMON block MBDIFF to access the variable LDERIV.

. The SPECS file uses keywords that you should become familiar with before running large

problems. Other values will be appropriate for other applications.

The MPS file specifies a sparse T X T Jacobian in the top left coracr of the constraint matrix.
An arbitrary value of 0.1 has been used for the nonzero variable encificients. A zero or blank
numeric field would be equally good.

8.4 Nonlinearly Constrained Optimisation

"9

Problem MANNE; main program and calcuiation of the objective function

L A e R amaa s as S ST e B P PP PO SRS TGN SR Ry

ERE I T I]

program MINOS

implicit doubls precision (a-h,a-z})

- - —— o —— - - - -

This is the default main program for MINOS.
It provides :l)l of the nacessary workspace.
If your compiler wants all common blocks to ba in the wain prograa
{(e.g. MACFORTRAN), grab tham from subroutina misalv in file milo..

- -

paramater (awaozre = 50000)
double precision £ (nwcore)

call minosl(2, nwcore)

end of main program for stand-alone MINOS.
and

B B A i o o L e o

¥ % % ¥ % X N RN

50

subroutine funcbi{ mode. n, x, £, g, natate, nprob, £, nwcore)

implicit double precision (a-h,o-x)
double precision x(n}, g(n), z(nweore)

----- g - -

This is funobj for problem tdmanne.

The data bt(*} is computed by tdcon on its first sntry.

For test purposes, we lock at Derivative level
and sonetimes pretand that we dan't knaw tha firat
thres elemants of the gradiant.

common fmlfile/ iread,iprint, isusm
common /madiff/ difint(2), gdvmmy. ldariv, lvldif, knowng (2}
commen /manne / b,at(100),bt {100)

intrinaic log
logicml gknown
paramater [zaro = 0.0d+0 }

gknown = lderiv .eq. 1 .cr. lderiv .eq. 3
nt = n/2
£ = zerc

do 50 § = L, at
xcon = x{nt+j)
£ = r + BL()) * log(xcoq)
if (moda .eg. 2} then
g{l) = zero
if (gknown .or. 3 .gt. 3) g(nt+j} = bt(l) / xcon
und if
cont inue

end of funokj fer t4manna
end

100

8. Examples

Problem MANNE; calculation of the constraint functions

PO TN N

T x W ¥

t

E I

0

150

1000
2000

$

subroutine funcen(mede, m, n, njac, x, £, g,
nstate, nprek, I. nweore

implicit double preciszlion {a-h,o-~t)
double precision xi{n), £{m). ginjac)., £(nwcore)

o kT o R M R A o e o O

This is funcon for problam tdmanne.

For test purposes, we look at Darivative level
and scpetimes pretend that we don’t know the first
thres elaments of the gradient.

e e o o ke e B o e e L e o e e S o B

commson /mlfila/ iread, iprint, isuze

common /mBAiff/ difint (2), gdusmy, lderiv, 1vldif, knowng (2}
COMMOnR /manoe / b, ac (100}, bt (100}

logical gknown

parsmeter { one = 1.0d+0)

gknown = lderiv .ge. 2
nt =n

- - .-

First entry. Dafine 5, at(*) and dt(™)
for this and all subsequent ancriaes.

if (natate .eq. 1) then

qrow - 3.03
beta = 0,95
xkO = 3.0
xcl = 0,95
xi0 = .05
b = 3.25

if {(iprint .gt. 0) write!iprint, 1000) nt, b

a = (xcd + xi0} / xkO**p
grfac = {ona + grow)"™*{one - b)
at(l} = argfac

bt(l} = beta

40 10 § = 2, nt
at(j) = at{j-1) *gfac
bt {4} = bt (j-l) *bate
continue

bt{nt) = bti{nt) / (ona - beta)
end if

"

Hozmal entry.

do 150 § = I, nt
xkap = x(j)}
£t1) = at (i) * xkap**h
1f (mode .eq. 2) then
if (gknown .or. 3j .gt. 2) g{3) = L*£(}) / xkap
snd LE
continue

Final sntry.
if (nstate .ge. 2) then
if (iprint .gt. 0) write(iprint, 2000) (£()}), J = 1, nt)
and if
return

format{// ' This is problam tdmanne. nt =, 14, ' b =, £3.3)
format(// ' Final ncnlinear function values' / (2£12.5))

ond of funcon for tdmanne
and

8.4 Nonlinearly Counstrained Optimisation 101

Problem MANNE; the SPECS file

Begin tdmanne (l0-period economic growth model)

Problem number 1114
Maximize

Raws 100
Columns 100
Elamants 100
Upper bound 100.0
Chiective = funob3
Nonlinear constraints 10

Nonlinear Jacobian wvars 10
Honlinear cbiective vars 20

HPS flle 10
* HNew Daais file 11
Jacobian Sparse
Majar itaerations 8
Minar iterations 20
Penalty paramater 0.1
Heassian dimsnsion 10
* Derivative lavel o]

* Verify gradiants

Scale option 2
Iterations 59
Print lavel (3f£lxb) 00000
Print frequency 1
Summary leval a
Surmmary fraguency 1

End Mannaell

102

8. Examples

Problem MANNE; the MPS e

NAME

ROWS

MONDOZ
MONO002
HCHOO02
HON0O4
MONOOS
HON006
MONOOT
HMONDOY
MORGQOY
NONOLY
CAPQO2
CAPOC3
CARCOA
CAPOOS
CAROOS
CARII?
CArooB
CAPQQ9
CAR010

P rrerrohanoan o

CQLUMNE
KARoO]
Kapeo1
XAPOO2
FAROOZ
AR QO3
TAROO3
XAROD4
KAR 004
KAROOS
KAPOOS
KAPDOE
KAROOS
KARQO7
Kargo7
KAPQOS
KARQOS8
KAPOL9
XARpOP
KARQ1Q
XARO10
CONOOL
CO%002
CORa03
CONQaOd
CONDDS
SONDOE
COKOa?
CONDOS
CONQOS
COXOLO
IRVOOl1
INVD02Z
INVoD2
INVO04
INVODS
veoe
Iwvoo?
INVIoR
ey
mvoln
INV01G

MANNELD

MOW001
CARGOZ
MONOCG2
CAROOD
WOMO03
CAPDO4
MO0 4
CARO0S
NOMODS
CAPOOE
NOWODE
CAROOT
MOMOO07
CARQO3
MOK0O0S
CARQIOS
MONGD9
CAPOLY
NOXOL10

MOMOOL
Honooz
MOMOO3
MONOC4
NON2OS
HONDO 6
HONDAT
MONDOR
HOW00 S
MOWOL0
MNONO0O01
MONDO2
NCHOL3
HONOGA
HONSCS
MONO0 6
MOWDOT
MONDOA
WONDO3
MOND10

+
[
N

[
M
HOQKF O+ aKH g

] [l b 1]]
[= [2 (= [2] [=
H H H . .

1
[

[L
[N ol o
« .

Y

1
H

L |
Ll ol P
A .

DO DO N0 L RGO B O HGRO D

(L
bl

[]
-

-1.Q
-1.0
-1.0

CApOO1
CAROOZ
CAROGY
Capo04
CAR00%
Capross
CAROG?
CAROOS
CARDDS

CAROL0

CARQO2
CAPOD3
CATO04
CARDOS
CaRoueé
CAROGT
CARGOS
CAROO®
ChROL0
CAFOI1

1.9
1.0
1.0

1.0

-1.0
-1.0
-1.0
-1.0
=1.0
-1.0
-1.9
-1.0
-1.¢
=1.0

8.4 Noanlinearly Constrained Optimisation

103

Problem MANNE; the MPS file, continued

" The RHS 1is zZaro

LAGRANGE

LAGRANGE
RANGES

RANGE1
BOUNDS
BOUND1L
BOOND1
BOUNDL1
BOUND1
BOUNDL
BOUNDL
BOUNDL
BOUND1
BOUND.
BOUNDL
BOUNDL
BOUNDL
BOUND1
BOUNDL
BOUNDL
BOUNDL

BOUND1
BOUNDL
BOTHD 1
BOUND1
BOUND 1
BOUND1
BOUND1
BOUKD1
BQUND1
BQUND1

BOUND 1
BOUND1
BOUND1
BOUMD1

INITIAL
INIZ
INITIAL
INITIAL
INITTIRL
TRITTAL
INITIAL
INITIAL
INITIAL
ENDATA

ARAANG RN EEEEEbEEE5055bE80bbbE5 6558666 %

MONOO2
HMONQL0

MONQL10

KAPQO1
KAROO2
XAROO3
KAROD4
KAPOOS
KAPQOS
XAPDO?
KAPOOS
KAPODS
KARQlO
CONDOL
CONGO2
CONGO3
CONGO4
CONOOCS
CONGO6
coNeo?
coNQD8
CONGOS
CaMB10
INVOQLl
INVOD2
INV0O03
IRVOOd
INVODS
INVQOE
IRVO0?
INVOGE
INVQC%
INVO10
INVOOA
INV009
T¥Valo
KAPOO2
XAR0023
KAP0O4
XAPOOS
KARODG
KAPDO?
FAPO0O8
KARo09
KARO10

W W W W W
Yo dJauwe whH-

HONOO3

-G.8

20.0

104 8. Exampies

Problem MANNE; output from MINOS

MInos 5.5 {May 1998)

Begin t4manne (iC-period sconomic growth madel)

Problem number 1114
Maximize

Rowa 100
Coluans 120
Elements 120
Upper bound 100.0
Objective = funobj
Joenlinear constraints 10

Fonlinear Jacobian vars IO
Bonlinear objective vars 20

MPS filas 10
¢ Nuw Basia fila i1
Jacobian Sparss
Major iteratioms 8
Minor iterations 20
Pamalty parametur 0.1
Hessian dimension 10
2 Darivative level 0

Verify gradients

Scala aption 2

[terations S50

Print level (3jrlxd) QOO0

Print freaqueacy 1

Sumsmary lavel 0

Summary frequemcy 1
Ead Mannwi®

Reasonadle Workspace limits are o ... 8384
Actunl Workspace limits are 0 ... 1DOOOO ... 100000 words of 3.
L
KPS tile
1 IAAE MANEEL)
2 ROVS
23 COLUNES
XXXX Kkarning - no limsar objective selected
IXAX Jon-existent row specified -- CAPOQL ~~ entry igmorsd in line 24
1Xax Bom-sxistent row specified -- CAPOLL -= entry igmored in liae a3
a5 RHY
.1} .
&7 * The RNY is zaro
68 .
XKXX Varming - first RNS is LAGRANQE. (Other MNS’»y will be ignored.
Tl RANGES
LLXX WVarning - the RNS is zsro
73 BOURDS
114 ENDATA

XKXX Total no. of errors in WPS fila 2

a4

Nonlipearly Constrained Optimization

Vames swlecied

............ -——

Objactire FUE0B) tRax) Q
HS Q
MATGES RANGEL b1
BOURDS BOUIDL 3
Na. cof Jacobhimn sntriss spacified 10
Ba of LAGRANGE emtries spacified 3
Bo. of ISITIAL bounds wpacifisd 3
lo. of supsrbasice specified 3
Bonzeros allowed for in LU factors 19394
Scale option 32, Partial price 1
Fartial price ssctiom size {A) 30
Partial price ssctiom size (1} 20
Matrixz Stasistics

Total Tormal Fres Fixed Bounded
Roms 20 18 [Q 2
Columny B o -} i 29
lo. of matriz elements 59 Demsity 9.833
Biggest 1.41103400 {axcluding fixzed columas,
Emallest 2. 0000E-0T fres vows, and RNS)
fo. of sbisctive cosfficiaemty |

Nanlinear cosstraints 10 Linear censtruiats 10
Jonlinear variablas 20 Linear variables 10
Jacobian variablas 14 Objective variables 20
Inicial basis
To basis file suppliad
Scaling
fiin slem Kax slem Fax col ratia

Aftar © 3. 00E-01 1.41K+00 331.3
Aftar 1 4. 18K-01 2. 40K+00 577
After 13 4.422-01 1.288+00 5.12
After 3 4. 42201 2.288+00 5.11

Hin scale flax scals
Cal 10 4.0E-01 Col 30 2.6E+00
Xow 20 1.TE~OL ot 19 L.7E+O0
Torm of £ixad columms and slacks 4.3E+00
{bafore and after row scaliag) 4.2K+00

Crash option 3

Crash en linear E rows:

28
19

Batwnan 0.5 and 2.0

3.3
5.0

108

8. Examples

Iterations

Crash on linear LG rovs:

Slachs 0 Free cols O FPreferrad 0

Unit 10 Dauble 0 Triangle 0 Pad [
Itn 2 == lipear constrainks satisfied.

This is problem tdmanne. nt = 1¢ b s 0,250

funcon dets 10 out of 10 comstraint gradients.
funobj savs 20 out of 20 objective gradisnis.

Cheap test on funcon. ..
The Jacoblian seems to be 0L,

The largest discrepancy was

Cheap test on funobj...
The objective gradisnts sesm to be OL.

Gradiant projected in tvo directions
Differencs approximations

6.67TE-10

in comstraint 2

4.00258220426E+00
4.00257T4008415+00

1. 00000CO00Q0E+Q0
9. 999998438228-01

Scaling
Min alem Max slem Mex col ratie
After 9 3.00E-02 1L .COE+00 33.33
Aftay | 4.18E-01 1.4QE+00 5.77
After 2 S .08E-0L 1.98E+00 3.9%
After 1 5.17E-01 1.935+00 3.74
Hin scale Kax scale Batvesn 0.5 and 2.0

Col 19 5.0E-01 Col 30 6.7TE+00 19 63.3
Row % 1.1E-01 Lor 11 1.58+00 10 0.0
fJorm of Tixed culummns and slacks 1. 8E4+00
{before and after rov scaling) 5.TE+00
Major minar tetal ninf atap objactive Feaasible Dptimal mab ncon

i 1T 1 0 O.0E+00 0.00000000E+00 0 .0X+00 1.2E+01 a 4
Crash omn nonlinear rowms:
3lacks 0 Free cols 0 Prafarred [}
Unit 10 Double 0 Triangle 0 Pad 0

2 1 2 0 1.08+00 2. 689T9TTBE+00 4. .48-06 7.98-04 T [
Completion Fuil now requasted

3 7 9 O 1.0E+00 2.67011960K+00 4.TE-08 T7.9L-05 7 21

4 2 11 0 1,08400 2,.670094483E+00 1. .16-12 1.6K-08 T 268

EXIT ~- optimal solutiom found

Problem name NANNELO
Ns. of iterations 11
Jo. of major iterations 4
Panalty paramater 0.901000
Fo. of calla to funobj ri
No. of superbasics 7
Se. of degensrate steps o
TForw of & {scaled} 1.5E+0Q
Borm of x 8. 5E+0Q
Max Prim inf(scaled) 0 0.0E+00
Max Primal infeas 0 Q.0E+0C
Honlimear comavraimt violn 1.9€-11

2.6T009062T 2E+00
0 . 0000000000E+00
2.6TO0U906IT 26+00

Objectiva value

Linwar objective
Banlinear objecsive

Eo. of callas to fumcon i1
fc. of basic nomlinsars 18
Percentage 0.00
Sorm of pi (mcaled) 1.7E+0L
Yorwm cf pi T.6L+00
Hax Dnal inf(acaled) 21 1.6E-08
Rax Dual infens 21 5.4E-09

LU penalty Bissp

31 1.0E~01

40 1.0E-0L

40 1.08-01
40 1.CGE-02

1)

8.4 Nonlipearly Congirained Optimitation 107
IARE FATNELD OBJECTIVE VALYE 1.6700886272E+00
STATUS OPTINAL 50LN ITENATION 1L SUPERBASICS H
GBJECTIVE FUIDB) [Max)
245
RANGES RANGEL
BOUNDS BLUND1
SECTION 1 - ROW3
TUNBEN .. RO¥.. STATE . .ACTIVITY... SLACK ACTIVITY . .COWER LINIT. ..UPPER LINIT. DUAL ACTIVITY .1
31 %ONOO1 L ©.00000 090000 Kone -1.01064 1
32 monoo? tL ©. 00000 0.00000 Noae -0.93193 1
33 KONOOD i 0. 00000 0.00000 Fona -0 85374 3
34 HOBOO4 L 0. 00000 0. 00000 Sone ~0.79217 4
35 #OR0OS L 0. 00000 9.00000 Tone -0.73021 5
38 mowooe L 0. 00000 0. 00000 Tone -0.67299 s
3T WONOOT i ©.00000 0.60000 Bone -0.82015 7
38 MONOOS LL 0. 00000 ©.00000 loae -0.57134 s
39 mwoow LL 0.00000 ©. 00000 lone -0.52678 9
40 NORO10 LL 0.00000 0. 00000 . 1000000 ~9. 84433 10
41 CAPDOZ UL Tone 1.01084 11
43 GRPOO3 UL tone 0.93193 12
43 CAPOOA uL Sone 0.85916 13
44 CAPOOS UL Fons 0.79217 14
45 CAROOS n lone 9.73021 15
48 CAPGOT uL Yone 0.47799 18
AT CAPOOS u Tone 0.6201K 17
48 CAPODY UL Rene 0.5T134 18
43 CAPOLO g1 Tone 0.52825 1
SO TERRIBY uL -20.00000 10.73%312 20
SECTION 2 - COLUNES
TUNBER COLUWE. STATE .. . ACTIYITY... .0BJ GRADIENT. ..LOVER LINIT. . UPPER LIRIT. REDUCED GRADNT A+]
1 RARCL £q 3.05000 3.05000 3.08000 1.09588 2
1 EAPOOZ 8% 1.12886 3.06000 10000000 17
3 LAPOD3 BSs 3.21443 3.05000 100 . 00000 0. 00000 13
4 RLAPOO4 Bs 3.30400 3.05000 100, 00000 . 00000 24
5 EKAPOOS BS 3.39622 3.05000 LOG , Q0000 0. 00000 28
8 LAPODS 2 3.48780 3. 05000 10000000 0. 00000 26
T EAPOGT Bs 35872 3.05000 10000000 9.90000 37
8 KAPOCS s 3.87842 1.05000 10000000 0. 00000 28
9 LAPCOW s 3. TTI58 1.05000 100.. 00000 0. G0000 29
10 KARO10 33 3. 8e207 . 3.05000 100. 00000 . 0
11 CoEoo1 w 0.95000 1.0 6.95000 100..00000 -8.01084 a
12 COROOZ (11 0.96842 0.93193 0.96000 L0, 00000 3
13 COBOO3 8s 0.99780 0. 85928 0.95000 100, 00000 3
14 CONOO4 ns 1.02820 0.79917 0.95000 100, 00000 M
1S CONgos BS 1.05967 9.73021 0.95000 10420000 35
18 COROOS BS 1.09227 0.87299 0.95000 100 . 00000 kT
17 GONQOT s 1.17608 0.82015 0.95000 100 . 00000 37
18 CoFoOS Bs 1.18116 0.57134 0.95000 100, 0000 38
15 CDEOOP 33 1.19763 0.52625 0.95000 10000000 %
20 cORO10 Bs 1.21394 9.88433 0.95000 100.00000 40
FANEDYE | (1)] 38 0.0Ts8s 0. 06000 100 . 00000 . 41
22 Iav00? 5pS 0.08778 0.05000 100 . 40000 0.00000 42
23 [EY003 518 0.08967 0.05000 100, 0000 0.00000 a3

168 8. Examples
24 1HVOO4 sBS 0.09122 0.05000 100 00000 0.00000 44
25 IEVOOE SHS 0. 09288 a 05000 160 OO0 0. 00000 45
28 IEVO0S sBS 0.09384 0.05000 109, 00000 0.00000 "
27 1H¥00T Bs 0.09471 0.05000 100.00000) 7
28 19¥008 sBS 0.0951$ 0.05000 3.11200 0.00000 48
2% tAvoos SBS 0 09508 0.05000 9.11400 0.00000 49
30 INY¥010 CL 0.11600 0.05000 0.11800 0.84778 SO

funcan called with natats =

Final nonlimear function values

1.02865 1.905610 1.08738
1.188132 1.22078 1.25833

funabj called with natate =

Time for KPS input

Time for solving problem
Time for solution output

Time for comstraint functicons
Time for objective function
Endrun

1.11942 1.18333
1.29271 1.32094

0.C5 seconds
0.0%9 saconds
0.03 seconds
¢.01 seconrds
0.00 ssconds

8.5 L'se of Subroutine MATMOD 10%

8.5 Use of Subroutine MATMOD

The following example iilustrates the construction of a sequence of problems. based on the Diet
problem cf Section 8.1. It assumes that the foliowing cards have been added to the SPECS file:

(1]

-

CYCLE LIMIT 3
CYCLE PRINT 3
CYCLE TOLERANCE 2.0
PHANTOM COLUMNS 1 (or more)

PHANTOM ELEMENTS 3 (or more)

. Solution of the original problem constitutes cycle 1.

. After cycle 1, MATMOD will be called twice with NCYCLE = 2 and 3 respectively, denoting

the beginning of cycles 2 and 3. The value of ¥ will include the normal columns and the
phantom columns; in this case, N = 6 + 1 = 7. Likewise, NE includes normal and phantom
elements; in this case, NE = 24 + 3 = 2T.

For cycle 2. we alter the cost coefficient on the variable called CHICKEN. This happens to
he the second variable, but for illustrative purposes we use the MINOS subroutine MANAME
to search the list of column names o find the appropriate index. In this case, MANAME will
return the value JCHICK = 2.

Similarly, we use MANAME to search the list of row names to find the index for the objective
row, whose name is known to be COST. In this case, MANAME will return the value JCIST = 11
Since rows are stored after the ¥ columns, this means that the objective is row number
JCOST — N = 4. (As it happens, this value is already available in the COMMON variable I0B..)

. This exampie aasumes that CHICKEN aiready had a nonzero cost coefficient, since it is not

possible to increase the number of entries in existing columns. If the cost coefficient was
previously zero, it would have 1o be entered as such in the MP3 file, and the SPECS lile
would have Lo set AIJ TOLERANCE = 0.0Q to prevent zero coefficients from being rejected.

For cvcle 3, we generate one new column by calling upon the MINOS subroutine MATCOL.
The PEANTOM COLUMNS and PHANTOM ELEMENTS keywords must define sufficient storage for
this new column. (The estimates defined by the normal COLUMNS and ELEMENTS keywords
must also allow for the phantom columns and elements.)

. For illustrative purposes, we make use of the specified CYCLE TOLERANCE and the value of

X(1) in the current solution, to decide whether to proceed with cycle J.

After the call to MATCOL, the COMMON variable JNEW points to the new column. It allows us
to set a finite upper bound on the associated variable. If there had been insufficient storage,
or if COL(#) contained no significant elements. MATERR would have been increased from 0 to
1. Usually, this means that the sequence of cycles should be terminated (by setting FINISH
= TRUE.}.

110 8. Exampies

subroutine matmod{ ncycla, nprcol, finish,
m, n, nb, na, nka, nes, Ascl, nname,
&, ha, ka, bl, bu,
ascale, hs, namel, oamel,
%, pl. re, z. nweore }

L 0 in

implicit double precision (a-h,o-t)
integec*{ ha{ne}, bs(nb)

integer ka{nka), nasal(nnama)}, name? (nnama)
double precisioen a{ne), sscalefascl), bl(ab), bu(ab)
double precision x{nb), pii{m}, rcl(ob), z{owcoow)

logical finish
[+
c HINDS COMMON SLOCKS (TO B2 USER BUT NOT ALTERES).
(4
COMMON /MIFILL/ IREAD.IMINT, I9UMN
COMMON /MSLOBJ/ SINF, NTOBJ «HENINE . NINP , 1OBJ .
COMION /CYCLOIY QNVTOL » SHEN . MATIRR . MANCY . NEFYNT . HIIGANT . NPR INT
c
c LOCAL STORASE.
c
QOUBLE PRECIIION COL(10), ITOL
INTISER CHICKY, CHICKE. COSTY, COSTE
QATA CHICKY » CHICKE /'CNIG*, XM */
GATA cosTt, Co3T: /tCOSTY, * 4

THIS IS AN EXAWPLE OF A USER-WRITTEN SUBRCUTINE MATMOR.
WHICH DEFINES A SEQUENCE OF PROBLENMS BY PERFORNING INTERMAL
MODIFICATIONS TO THE DATA FOR THI OLET PROBLEN.

MATMOD I3 CALLES AT TMHE SEQINNING OF EACH CYCLE EXCEPT THE PIRST.
NCTYCLE WILL TAKE THE VALUES 2, 3 ... UP TO THR CYCLE LIMIT.

IF (NCYCLE .8T7.) 00 7O 30

CYCLE 2. ALTEN THE COST OM CNICKEN.

AOONOO0ANO0000 DOnNOKOOOND

Egzigg

t

CALL MWANEC M8, IDT, ID2, CMICXKE, CNICXR,

* NCARD, NOTFND, MAXISD, Ji, JE» JWARR, JONICK)
IF [JOMICK .24.) 83 TG %00

8.5 Use of Subroutine MATMOD LtL

NOM FIND THE INDEX OF THE QBJECTIVE RON, WNICH IS NAMED COIT.
ROM NAMES ARE STORED IN THE LAST M JCATIONS OFf I0D1 AND IDZ.

Ji L)

J T N

JHAN = g

CALL MANAME(MNB, ID1, IDZ, COSYY, COOTI,

L] NCANG . NOTHD. MUOWS, Jt, JE, JUARE, JCOBT)
IF (JCOST .EQ. 0) 80 TD 4

THE ROM MUFBER 1S NOM JCOST - N. IN FACY, TNIS VALUR COULD MAYVE
SEEN COTAINED OINECTLY FROM THE COMMOM VARTABMLE IO0BJ.

ICOST = JCOST - N
IF (ICO8T .M. 1UBJ) @0 TO ™9

NOM ME DIP INTO THE MATRIX DATA STRCTURE TO FDD WERY TWE
COST COEFFICIONT 13 IN THE MATHIX COLUMN ASSOCIATES MITN CHICKEN.

Kt 2 KALJCHICK)
K2 ® KA(JCHIEK * 1) - 9
DO 2218 K 3 X1, K2
e IF (MA(K]} .L6. ICOST) 80 TO 154

0 TO "

W FOLMD IT. NOM SUPPOSE CHICKEN IS SELLING AT A BARGAIN BATE.

MM OWE = XD
AKE = 10.0

IF (IS .&8T. 0) WRITR{ISUISY, 1084} OLDEC, AIK]
nETURM

(2 X311

aonn

o000

noh

CYCLE 3. SENERATE A MEM COLUL.

FOR ILLUSTRATIVE MURPOBES WE 3ET UF THE MEM PROBLEM ONLY IF
THE SOLUTION TO TME CURRENT FIIBLEN CONTAING MORE OATMEAL THAN
THE SPECIFIRD CYCLE TOLERAMCE. WE WAPPEN TO XNON THAT OATMEAL
I3 R FIRST VARTAME, XV,

308 IF (NCYCLE .8T. 3) 20 TO "
IF (I .6T. §) WEITECIUNY. 3000) X(1)
IF 4Xt1) .LE. GVTOL) 80 TD "
coLit) = 500.9

oOOGoONONno

coti) s 0.9
[-- KR TN S B |
coLal = 5.0

ITL = ([.08=8
Cll.l.ll'l'u.l M W My NE, HKA»
Ae Rho KAy BL, By OOL, ITTOL)

o000
5

NnHNHoD

TERNINATI CTCLIS UWDER VARIOUS COMIITIONG.
e FINIIN = .TRR.
RETURM

-

2000 FORMATI/ * wae m‘w CNICKEN CHANGED FRON', FA.1,
d * Te', FR.ZT]

3000 FORMAT(/ * Sa CURRENT AMOUNT OF OATMEAL 1I3°, FA.2)

c g OF HKATHED

112 8. Examples

8.8 Things to Remember

Use the following space to record the fruits of your experience. They may be useful remindees
the next time you come to run MINOS. {We suggest you use a pencil.)

References 13

REFERENCES

Rartels. R. H. (1971). A stabilization of the simplex method, Num. Math. 16, 414-134.

Bartels, R. H. and Goiub, G, H. (1969). The simplex method of linear programming using the LI/
decomposition, Comm. ACM 12, 266-268.

Bjorek, A. and Duff, I. §. {1980). A direct method for the soclution of sparse linear least squares
problems, Linear Algebra and its Applics. 34, 43-87.

Bracken. J. and McCormick, G. P. (1968). Selected Applications of Norlinear Programming, Jonn
Wiley and Sons, New York and Toronto.

Brooke, A., Drud, A. and Meeraus, A. (1985). High level modeling systems and nonlinear pro-
gramming, in P. T. Boggs, R. H. Byrd and R. B. Schnabel {eds.}, Numerical Optimization
1984, SIAM, Philadelphia, 178-198.

Chvital, V. (1983). Linear Programming, W. H. Freeman and Company, New York and San
Francisco.

Dantzig, G. B. (1951). Maximization of a linear function of variables subject to linear inequalit;es.
in T. C. Koopmans (ed.), Activity Analysis of Production and Allocation, Proceedings of
Linear Programming Conference, June 20-24, 1949, John Wiley and Sons, New York, 359~
373.

Dantzig, G. B. (1963). Linear Programming and Extensions, Princeton University Press, Prince-
tor, New Jersey.

Davidon, W. C. {1959}. Variable metric methods for minimization, A.E.C. Res. and Develop,
Report ANL-5990, Argonne National Laboratory, Argonne, Dlinois.

Fourer, R. (1982). Solving staircase linear programs by the simplex method, Math. Prog. 23,
274-313.

Gill, P. E., Murray, W. and Wright, M. H, (1981). Practical Optimization, Academic Press, Lon-

don.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1979). Two step-length algorithms
for numerical optimization, Report SOL 79-25, Department of Operations Research, Stanford
University.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1986). Maintaining LU factors
of a general sparse matrix, Report SOL 86-8, Department of Operasions Research, Stanford
University. (To appear in Linear Algebrs and its Applics., 1987.)

Himmelblau, D. M. (1972). Applied Nonlinear Programming, McGraw-Hill.

Lawson, C. L., Hansor, R. J., Kincaid, D. R. and Krogh, F. T. (1979). Basic Linear Algebra
Subprograms for Fortran usage, ACM Trans. Math. Software 5, 308-323 and (Algorithw
324-325.

Manne, A. S. {1977). ETAMACRO: A Model of Energy-Economy Interactions, in C. J. Hith
{ed.), Modeling Energv-Ecanomy Interactions. Resources for the Future, Washington, D¢
Also in R. Pindyck (ed.), Advances in rlie Economics of Energy and Resources, Vol. 2: i '+

114 References

Production and Pricing of Energy Resources, JA} Press, Inc., Greenwich, Connecticut, 1979,
2056-233.

Manne, A. S. (1979). Private communication.,

Murtagh, B. A. and Saunders, M. A, (1978). Large-scale linearly constrained optimization, Math.
Prog. 14, 41-72.

Murtagh. B. A, and Saunders, M. A. (1982). A projected Lagrangian algorithm and its implemen-
tation for sparse nonlinear constraints, Math. Prog. Study (6, Algorithms for Constrained
Minimization of Smooth Nonlinear Fuactioas, 84-117.

Preckel, P. V. (1980). Modules for use with MINOS/AUGMENTED in solving sequences of math-
ematical programs, Report SOL 80-15, Department of Operations Research, Stanford Univer-
sity.

Reid, J. K. (1976). Fortran subroutines for handling sparse linear programming bases, Repoct
R8269, Atomic Energy Research Establishment, Harwell, England.

Reid, J. K. {1982). A sparsity-exploiting variant of the Bartels-Golub decomposition for linear
programming bases, Math. Prog. 24, 55-69.

Robinson, S. M. (1972). A quadratically convergent algorithm for general nonlinear programming
problems, Math. Prog. 3, 145~156.

Rosen, J. B. and Kreuser, J. (1972). A gradient projecsion algorithm for nonlinear constraints,
in Numerical Methods for Non-Linear Optimization (F. A. Lootsma, ed.), Academic Press,
London and New York, 297-300.

Rosenbrock, H. H. (1960). An automatic method for finding the greatest or least value of a function,
Computer J. 3, 175~184.

Saunders, M. A. (1976). A fast, stable implemenvacion of the simpiex methcd using Bartels-Goiub
updating, in Sparse Matrix Computations (J. R. Bunch and D. J. Rose, eds.), Academic Press;
New York, 213-226.

Wolfe, P. (1962). The reduced-gradient method, unpublished manuscript, RAND Corporation.

Wright, M. H. (1976). Numerical methods for nonlinearly constrained optimization, Ph. D. thesis,
Computer Science Department, Stanford University.

{ndex

115

INDEX

A, in printad salution, 70, 72
Accuracy, for satisfying linear constrainta, 28, 87
for satisfying nonlinear constrainis, 3
for solving iinaarised subproblems, 22
of computed functions, 27, 66-87
of linesearch procedure, 2339
AXJ TOLERANCE, 11
Alternative optimum, 10
Augmentad Lagrangian, 34, 5S4

B, Basis matrix, 2-3,
BACKUP BASIS Flu 2, 951
Bm R- H-§ ll|
Bagic variables, 1
BASIS files, 49-34
Basis map, 49-81, 58-49
Bawis matrix, 3, 3-3, 34
Bounds, 1-5, {48

specilication of default values, 29, 34
BEAX, in basia factorization statistics, $3
BOUNDS scction of MPS file, i8-—18
BOUNDS keyword, specifying nama of bound ses, 21
~B3, in iteration log, 59

CALCPFG, subroutine, |
CALCON, subroutine,
CENTRAL DIFFERENCE INTERVAL, 12
CHECK FREQUENCY, 22
COEFFICIENTS, 22
Cold start, ses CRASH
Column ordering, implicit, 31, 44
Column variables, 1, 71
COLUMNS section, of MPS fils, 31, 4344
of printed solution, T1-72
COLUMNS, estimate of number of variables, 22
Comment cards, in MPS Ale, 414
in SPECS e, 17-14
COMMON blocks, 7, 13-18, 83, 70, T¢
reserved, 78
Compasibility with MINOS 4.0, B1
COMPLETION options, 23
Composite objective tachaique, 40
COMPRSSNS, in basie factorination statistlcs, §1
Conjugate-gradient method, 1
Constant Jacabian cementa, 11, 44
CONV, in iterstion log, 80
Convergence, likelihood of, 4, 23-84, 30
rate of, 3,27, M4
Lolerances, see FEASIBILITY TOLERANCE,
OPTIMALITY TOLERANCE sad
ROW TOLERANCE;
aso sce CYCLE TOLERANCE
CRASH procedure, for aslecting initial basle,
22-23, 47
CRASH opsions, 33-33, 47, A
Cyele facilitivs (for sequences of problems), 8,
13-13, 23, 58, 108111 A
CYCLE options. see cycle lucilition
Cycling (endiess iterarions), 86

D, ir prinied solution, 70, 72
Damped Newton method, 28
DAMPING PARAMETER, 13-1¢
Danisig, G. B.. i ii. 1
Data, input sequencs, 7
Davidon, W. C,, }, 2
DEBUG LEVEL, 24
Detsult values for SPECS fle keywords, 18-20
Degenerate variable, 70
DEMAND, in basis Isctorization statistics, $1
Deanse Jacobian matrix, 44, W, %6
DENBSITY, in basis factorization statistien, $1
DERIVATIVE LEVEL, $-11, 24~2%
DIFFERENCE INTERVAL, 28
Difference appreximation to derivatives,
see Mmissing
DJ, in iteration log, 58, 80
Duaj simplex mathod, |
Dual variables, 10, 32, 84, 70, 71, 73
DUMP BQle, 25, 33-84

RLEMENTS, astimate of nonsercs in A, 33
ELEMS, in basis factorization statistica, 81
EMERGENCY VERIFY LEVEL, wee VERIFY options
End-of-File condition when reading SPECS file,
13, &t
ENDRUN messsge, §2
Equality conetraints, {3
Error checks, on computed gradients, 3§—37,
35-30, 82
on satisfying Az + ¢ =~ 0, 23, &7
Error messages, M, §3-19
during inpus of MEF'S tle, 38
BTAMACRO, test problem, 7%, 84, 93
Exampie probiems, 35-104
Bsit conditions, $3-8%

¥, parameter of FUNABJ, 10, 18
F{»), parameter of PUNCON, 11, 11
P(s), swe nonlinesr ohjsctive function
f{1), see nonlinesr constraint functions
Fattorization of basis matrix, 24, 29, 33, 58-38,

61-61

FACTORIZATION FREQUENCY, 28
FACTORIZE, in basia factorization sustistics, 81
FEASIBILITY TOLERANCE, 26, 47, 64
Fensible points, definition, 3

evaluation of functions at, 3, 24, 47
Files, §-7, 80, 82, S
Formulstion of problems, 5, §
Fortran source liles for MINOS, 73-41
Fostran 86 versus Fortran 77, 78
Free rows, 42
Free varisblea, 4§
Fuil compietion (accurste solusion of subpreblems),

22

FUNCON, sabroucine, 7, 8

consisteancy with MPS file, 14

examples, 98, 100

specification, 11-12
FUNCTION PRECISION, 27, &7
FUHQBJ, subroutine, 7. 4

consistency with MPS file, 44

11e Minoa 5.0 User's Guide

examplea. 20, 05. M
spacification, 9-10

G€a), praameter of FUNCBYJ, 10

G (#), parameter of FUNCON, 11-12, 44
Gil, P.E., i, 2 3

Global optimum, 5, 84

Golub, Q. H., il, 2

GROWTH, in basis factorisation statistica, 52

Header cards in MP3 file, 41
HESSIAN DIMENSIGK, 27, 31
Hessisn matrix, $

HMOD, in iteration log, 89
H=-CONDN, in iteration log, 00
HS(*), state vector, 14, 50-51, &8

1, in printed solution, 71, 73
INCREASE, in basia factorisation siatistics, 3
(vequality constrainta, 43
INFEAS, in basie factorisation staiistics, 51
Infessibilities, 28, 40
[nfessible problems, 28, 8448
Infeasible subproblems, 5488
Infinite bounds, 48
Initial poing, 24, 3, 4, 3, 23, 4748
IMITTAL bounds set in MPS 8l 4748
input to MINOS, 7
examples of, 85-103
INSERT fls, 27, 51-53, 54
Installing MINOS, 75-91, 84
Integer programming, 1

Internal modifications to probleta, see cycle facilition

Invert brocadure, see (aztorisation of basis matrix
[teration log, 29, 57-40
exsmpie, 108-108
ITERATIONS LIMIT, a8
ITN, in iteration log, 57

Jacobian matrix, Jix}, definithon, 3
computation of, 11-1%
coustant cosflicionts, 13, 44
position within constraint matrix 4, 4, 44
printing, 34
spanity paitern, 12, 44

JACOBIAN option (DENSE or S8PARSK), 28, 44

Keywords in SPECS fhle, 17
checklist and defauit values, 18-20
definitions, 31-40

Krauser, J., i

1, problem; 08
Ay, see Lagrange multipliers
L, in iteration log, 58
LADS basis-handling package, ii
Lagrange muitipiiers, Mg, i, 4, 13, 14, T
printing, 34
initial estimate, Ao, 4
Lagrangian, 4
LAGRANGIAM option (YEB or NOJ, ¢, 28
Least squares, linear, 9$2-93
LENL, in basis factorisstion statistics, §1
LENU, in basis factorisation statistics, §1
LIKEAR, in basis factorisaticn statistics, (1
Linear approxirastion to noniinear tonstrainta,
sae linegrizad constrainte
Linesr constrainte, 1-8, 1§
Linear programming, i, ¥
mﬂ'u 46-47
test problem, ses ETAMACRO
Linearised constraints, 4, 70
Linearly constrained opilmisation, 3-3
examples, 9093
Lina search, 3
sceuraey of, 249
failure of, 68-87
LINESEARCH DEBRUG, 38
LINESEARCH TOLERANCE, 38-39
Linesearch procedures, i, 28-29, 38
Linking subroutines to MINOS, &
LIST LIMIT, for prinking MP3 Gle, 29
LMAX, in basie factorization statistics, &2
LOAD fle, 29, 53-54
LOG FREQUENCY, 29, M4
Loeal optimum, 3, #4
Logical variables (sincks), 1
Lower bounds, see bounds

LOWER BOUND (default lower bound ca ali varinbles),

29

LU factosiaation of basls mairix, i, 3, 3, 81, $8
see [actorization of basis malsix

LU FACTOR TOLERANCE, %, 3

LU UPDATE TOLERANCE, %

LUSOL basis-handling packags, i-ii, 1

m = m; + ma (number of nonlinear and linear
constraints), 1, 8
my {number of nonlinesr constrainia), 1, 6, 18
ms (numbar of linear constraints), 1, 8, 18
Machine-dependent subroutines, 75, 78-31
Machine pracision, ¢, 13, #1
Main program, 78, 82
Major iteration, 4
MAJOR ITERATIDNS limit, 30
Manne, A- 3., i, 83, 04
MANNE, test problem, 7%, 76, 40, 83, 34108
Markowitt, ordering for sparse LU actorisation,
ii, 3, 81
MATCOL, subroutine, 14, 23
specification, 15
Mathematical programming systems, |, 3, 41, 18,
52-54
MATYEOD, subroutine, 7, 8, 23, 83
example, 108-111

Index

117

specification, 13-14
Msirix coefficients, ignoring small values, 21, 109
number of, 3§
Matrix dats steucture, 15
Miner iteration, 2
MINOR ITERATIONS limit, 30
MINOS, scroaym, i
MERIT, in basis factorization statistics, $1
MHW4D, example problem, 34~97
Missing gradients, 1, 0, 24-28
MODE, parameter of FUNOBJ and FUNCON, 9-19, 11,
13, 88
MP3 tle, 8, 7, 30, 4144, 8
sxampies, 87, 89, 91, 97, 102-103
restricdions and extensions, 48
MULTIPLE PRICE optica, 31
Murray, W, 1, 2, 3
Murtagh, B. A., 2, 3

% == ny + ny (number of nonlinear and Unear
variables, excluding siacks), 1, §
n, = max{n}, nY} (swmber of nonliinear variables, s),
1,616, 37
w} (sumber of conlinear objective variables), 51
nY (samber of nonliseer Jacobian varinbies), 31
ny (number of inear variabies,), 1
N, mairix sssocisted with nonbesic variables, 3
X, in printed solution, 71, 73
NAME card in MPS file, 41
NCON, in iteration log, 4
NCP, in iteration log, 54
NINF, in iternbion log, 34
NJAC, parameter of FUNCON, 11, 13, 18
NEW BASIS tile, 31, 31, 49-81
NABJ, in iterstion log, 50
Noisy fanctions, 1, 27, 6687
Noabasie variables, 3
Nonlinear constraint fanctions, f(s), 1, 34, 7, 11-18
printing, 34
Noalinsar constesimis, 1, 34, §
Noalinear tquations, 33-34
Noalinesr Jacobian variabies, 31, 44
Nonlinear objective fuactioa, F(s), 1, 3-3, 7, $-10
Noanlinear objective variables, 31, ¢4
Noanlinear variables, 1, 4, 44
printing, 34
NONLINEAR, in basis factorisation statistics, §1
NONLINEZAR CONSTRAINTS and VARIARLES, 31
Nonlinearly constrained optimisation, 34
exampies, $4-108
NOPT, in iteration log, 58
NPROB, parameter of FUNOBJ, FUNCON and MATHOD,
10

N8B, in iteration log, 50

NSTATE, paramster of FUNOBJ snd FUNCON, 10

NWCORE, parameter of FUNOBJ, FUNCON and MATMOD,
10, 40, T

Objective funciion (P(s) + ¢Tz + 4Ty}, 1

Objective row in MPS fle (defining c 5+ df,),

OBJECTIVE, in basis {actorisation statistics, §1

OBJECT IVE in iteration log, 59

OBJECTIVE keyword. specifying name of [inear
objective, 32

OLD BASIS fila, 21, 32, ¢8-51

Qptimal solutions, local and global, 5, 83-8¢

OPTIMALITY TOLERARCE, 32, #4, 47, T1

Ordering of consmraints and variables, 31, 43, 44

Qutput from MINOS, 57-T4,

see aiso LOG mmm PRINT
SUMMARY PFREQUENCY L

P4 ordering for spares LU fackorisation, |
Parameters, K, 7

Parametric algorivhme, 1

Partial completion, 23

Partial pricing, 33, 37-58

Penalty parameter, p,l,ll.‘

FPENALTY PARAMETER, 4,

PH (Phasa), mit«alh-b:.l‘l‘-&l

PHANTOM COLUMNS »ad m&tll,ﬂ

memmﬁ.l

PIVDT in iteration log, 58
mtmlﬂ.u.u.u

PP uihnﬂulo‘.

Freckel, PP. V., il

PRICE operation, 57

Primal simplex method, ses simplex method

PRINT #ile, §-7, 38

PRINT LEVEL options, B4, A.]

Problem forms soived by MINOS, 1

Problem formulstion, 3-8

PROBLEM NUMBER, 10, 13, 34

PUNCH Bls, 35, 58, 54

i
example, $0-01
Quasi-Newton method, |, 3, 3, 6, 37, 30-800

R, irlanguisr matrix for approximation 10
reduced Hoesian, 3, 8, 27, S0-60

RADIUB QF CO . 38
Ranges on general constraints, 1, 46—48
RANGES section of MPS fle, 4548
RANGES keyword, speci{ying name of range ses, 3§
Raaging procedures, |
READ file, #-7
Record length of Hles, §-7
Reduced gradient (vector), 3, 33, 37, 58, T2
Reduced-gradient algovithm, 2, ¢, 58-60
Reduced Hessiaa (matrix), 13, §0-60
Reid, I. K., 1, il, 8
Restarting pesvions runs, 4§, 55-38, TI
Restrictions, in MPS format, 48

on problem characteristics, 3-8
Rewinding Gles, 7
RG, in iteration log, 54
RHS section of MPS file, 43
RHS keyword, specifying name of right-hand side, 3%

118

Minos 5.0 User’s Guide

Right-hand side, 1, 48

Robinson, 5. M., i, 3

Roeen, J. B., 1

ROW CHECK, message in PRINT file,
see CHECK FREQUENCY, 22

ROW TOLERANCE, 22, 28, 3%

ROWS saction, of MPS fle, 4343

of printed solution, 70-71

ROWS, estimate of numbar of general constraints,

k1]

1, vector of siack variables, see slack variables
1, number of superbasic variabiles, 2, 5

5, matrix associsted with superbasic variables, 1

Ssunders, M. A, §, 2, 3
SAVE FREQUEXCY, 11, 38
Saving basis dles. 21, 34, 8§
+SB8, -8B8, in iteration log, 58
SCALE options, 38. 2
Scaling of dets and variables, 5, 35-38
SCRATCH fla, §-7
Search direction, 3
Semsitivity snalysise, i
Separable functions, §
Sequence of problems, 7, 8, 13-18
Simplex method, 1-2, 37
SINY, in iteration log, 84
Singuiar basls, 82, K3
Singularities in nonlinear functions, 5, 28, 38
Slack variables, 1, 15, 36, T0-71
SLACKS, in basis factorisation ststistics, §1
Smooth functions, i, §
Solution output, T0-73
example, 108
SOLUTION hle, §-7, 38, 72
SOLUTION options, 36-37
Source fles (MINOS Fortran code), 73-81
Sparse Jacobiaa matrix, 4, 44
Sparse constraint matrix, 4, 18
SPECS file, 83, 17-40
checklist and defauit values, 13-20
exampies, 3%, 38, 91, 93, ¥7, 101

format, 17-18
keywords, 2140
Soikes, |
Standard form for problems, 1
START and STOP verification, 37

State vector, H8(®), 14, 50-51, 50

STEP, in itersilon og, 38

Storage aliceation aad/or requirements,
s4s workspace

Steuctural varisbles, 1

Subproblem, definition, 4

Subroutine hierarchy, 8%

Subroutine namwe, reserved, T7-78

Subroutines, required from user, 7, 30

SUBSPACE TOLERANCE, 37, 0

SUMMARY file, -7, 38, 73-T4

SUMMARY FREQUEBKCY, 32

Superbasic variables, 2, 8, 13, 38

SUPERBASICS LIMIT, 77, 38

Suppression of output, 34, 38

SUPPRESS PARAMETERS opticn, 38
System information, 58, I5~16, 63, 73-81

Test probiems, 75, 76, 83-84, 85-93, 84-108
TOO MANY ITERATIONS. exit condition, 88
Transformation of variables, 5

U, in iteration log, 58
in basis fectorisation statistics, 62
TUMIN, in basis factorization siatistics, 62
Unbounded problems, 38, 88
Uneconstrained optimisation, example, $8-89
Uppar bounds, see bounds
UPPER BUUND {default upper bound on ail variables),
38

VERIFY opsions for checking pradiemas, 38

Warm start, 40-58

WATFIV compiler, i, 78

WEAPON, Lest problem, 75, 89

WEIGHT OM LINEAR DBJECTIVE, @0

Woells, P.. i, 2

Workspacs {storage requirements), 3-8, 10, 40, 59,
68, 69, 79, 0

WORKSPACE parameters in SPECS file, 40, 43

Wright, M. H., 4, 3, 3, ¥

Wylbur text oditor, iil

x, nonlinear variables, 1, 4
20, see initial poist
a4

printing, 34
¥, inear variables, 1

Z, null-space opersior, 3
Z, workspace array, see workapacs

Appendix A

MINOS 5.5

Most of the MINOS 5.0 User's Guide applies to all versions of MINOS since 1983. The
Guide has been changed slightly to match MINOS 5.1. These appendices summarize further
changes and new features in MINOS 5.5.

A.1 CHANGES BETWEEN MINOS 5.1 AND MINOS 5.5

1. MINOS is now callable as a subroutine {see Appendix B). The stand-alone form of
MINOS reads constraint data from an MPS file, whereas subroutine minoss has the
same informazion passed to it as parameters. In these notes the term MINOS usually
refers to both cases, but occasionally we need to distinguish between them.

2. Upper and lower case may be used in the SPECS file. Numerical values may contain
up to 16 characters. For example,

Iterations limit 2000
Lower bound -1.23456E+07

3. The default values of some options have changed as follows:

Print lewval 0

Print frequency 100 (alias Log frequency)
Summary frequency 100

Hessian dimenaion g0

Superbasics limit 50

Crash option 3 (nav default and new meaning)
Scale option 2 for LP, i for NLP
Factoriza frequency 100 for LP, 50 for NLP

LU Factor tolerance 100.0 for LP, 5.0 for NLP

LU Update tolerancd 10.0 for LP, $.0 for NLP
Partial price 10 for LP, 1 for NLP

Check frequency 60

Fanalty parameter 1.9 is equivalent to c¢ld default

4. Derivative level 0 requests a function-only search. even if funobj and funcon
compute all gradients. The linesearch calls these routines with mode = 0, not mode =
2. An extra call with mode = 2 is needed after the search, but the net cost may be
less if gradients are very expensive (e.g., if the user is estimating them by differences).

119

Appendix A. MINOS 5.5

. funecbj and funcen may row return moda = —1 to mean "My nonlinear function is

tndefined nere’. During normal iterations, this signals the iinesearcn to try again
with a shorter steplength.

Previcusly. if funobj or funcon teturned modae ; 0, it meant *Please terminate”. To
request termination now. set moda < -2,

. Crash option 2 and 3 have been ajtered, The Crash procedure chooses a triangular

basis from various rows and columos of (A I}. In some cases it is cailed more than
once as follows:
Crash option O chooses the all-siack basis = 1.
Crash optian 1 calls Crash once, looking at all rows and columns.
Crash option 2 calls Crash twice, looking at linear rows first.
Nonlinear rows are treated at the start of Major 2.
Crash option 3 (default) calls Crash three times, looking at linear
eguality rows first, then linear inequalities, then
nenlinear rows {if any) at the start of Major 2.

. For problems with many degrees of {freedom (lots of superbasic variables), experience

suggests the following. Up to a certain point, it is best to provide 2 {ull triangular ma-
trix R for the “reduced Hessian approximation™ used by the quasi-Newton algorithm.
For example.

Hessian dimension 1000
Superbasics limit 1000

would be suitable for most practical models, However, if the number of superbasic
variables does reach 1000, considerable computation is needed to update the 500,000
elements of the dense matrix K.

For more extreme cases it may be better to work with a smaller matrix A:

Hassian dimenaion 100 or 200
Superbasics limit 5000

(e.g., for optimization with many variables and few constraints). The number of
iterations and function calls will increase substantially. The functions and gradients
should therefore be cheap to evaluate.

For general problems with many degrees of freedom, consider LANCELOT. For large
problems with bound constraints only, consider LBFGS-B or LANCELOT. Both sys-
tems are available via NEOS: http://uww.mcs.anl.gov/home/otc/

. Jacobian = Dense or Sparse is still needed with MPS files, but need not be specified

when subtoutine minoss is used.

The Minor iterations limit now applies to the feastble iterations in each major iter-
ation. Any number of (infeasible) minor iterations are allowed while MINOS iterates
towards a “feasible subproblem”.

A.l1 Changes between MINGOS 5.1 and MINOS 5.5 121

Ihe first major iteraticn is special—it stops as soon as the original linear constraints
are satisied.

bor later major iteraticns. if the log says 50T and the Minor iterations limit is 4.
we know that 1C minor iterations were needed to satisfy the linearized constraints of

the subproblem, and a further 40 were spent optimizing the subproblem befare it was
terminated by the Minor iterations limit.

10. Penalty parameter 1.0 is now the default, and it is relative to the old default of
100/, where my s the number of nonlinear constraints. Penalty parameter 2.0
means twice the default value. This makes it easier to experiment with.

11. Tt is possible to turn off all output to the PRINT and SUMMARY files. The Print anc
Summary options are as lollows:

Print file 0 No output to PRINT file,

> 0 Output to specified file.
Print lavel 0 One line per major jteration.

>0 Full output as before.
Print frequency 0 No minor iteration log.

A minor iteration line every i itns.

Summary file 0 No output to SUMMARY file.

>0 Qutput to specified file.
Summary level 0 One line per major iteration.

>0 More output.
Summary frequency 0O No minor iteration log.
i A minor iteration line every i itns.

12. Cold, Warm and Hot starts may be used when solving a sequence of problems of the
same stze,

For stand-alone MINQS, the sequence of problems is defined via the Cycle parameters
and the user routine matmod, which may access the common block

logical gotpas,gotiac,gothes,gotecl
common /cyclel/ gotbas,gotfac,gothes,gotscl

ta say whether or not the existing basis. basic factorization, reduced Hessian, and/or
scales should be used to initialize the next solve, If gotbas = .falaa., Crash will be
used to choose a starting basis. Otherwise, a basis is assumed to be specified by the
array hs(*), and some or all of the other three quantities may be preserved.

For subroutine minoss, these logicals are set if the first parameter start is 'Hot
xxx’, where xxx is any of the letters FHS. See Appendix B.

13. Following the EXIT message, some information is output to the PRINT file and the
SUMMARY file. Lines of the form

Primal inf (scaled} 444 4.8E~07 Dual inf (scaled) 268 5.2E-06
Primal infeas 412 2.6E-08 Dual infeas 502 9.3E-07
Nonlinear constraint violn 2.8E~14

122

Appendix A. MINOS 5.5

14.

15.

16.

17.

show the maximum primal and dual infeasibilities before and after scaling. and the
associated variable number, {Variable j is a column z; for L < 7 < n and slack s,_,
forn+l€j<n+m,

Note that “Primai infeasibility™ is :he amourt by which z and s lie outside their
bounds. In this example, variable 444 lies furthest outside its bounds before the
solution is unscaled. More importantly. variable 412 is the most infeasible in the
final soiution—it lies outside its pounds by 2. 6e-6. If this seems too large, the
Feasibility tolerance would need to be reduced below the maximum scaled infea-
sibility 4.6e-7 (or the unscaled value 2.6e-6 if scaling was not used).

Similarly, variable 502 is the one whose reduced gradient has the “wrong sign” by the
largest amount. If this seems too large, the Optimality tolerance would need to

be reduced below 5.2E-06+norm{pi}, where the required norm of x is printed three
or one lines above {depending on whether scaling was used).

Where relevant, the §onlinear constraint violn line gives the maximum amount
by which any nenlinear constraint value lies outside its bounds in the final 1nscaled
solution.

The printed solution and SOLUTION file treat 0.0, 1.0, -1.0 specially. [n particular, a
dot { .) means 0.0, not “Same as the line above!

In the Fortran source code, integer=2 has been changed to integer*4 throughout, to
allow solution of arbitrarily large problems. This change is reversible. (The variable
nwordh must be set appropriately in subroutine miinit.) If integer*2 is used, the
maximum number of rows is 16383.

In source file mi10%.for, subroutine mifile defines some “hard-wired” file numbers
and opens most files by calling miopen. Some of the file numbers and open statements
may need to be altered to suit your system.

The first two lines of OLD BASIS and NEW BASIS files accommodate larger problems
than in MINOS 5.1.

A.2 NEW SPECS FILE KEYWORDS

All of the following keywords are new except the first. Crash options 2 and 3 now have a
different effect and option 4 is not defined.

Crash option i Default = 3

Except on restarts, a Crash procedure is used to select an initial basis from certain rows
and columns of the constraint matrix { A /). The Crash option ¢ determines which rows
and columns of A are eligible initially, and how many times Crash is called. Columns of I
are used to pad the basis where necessary.

i = 0 The initial basis contains only slack variables: B = [I.

{ Crash is called once. looking for a triangular basis in all rows and columns of A.

A.2 New SPECS file keywords 123

2 Crash is called twice (if there are nonlinear constraints). The first call ‘ooks for a
trianguiar basis in linear rows, and the first major iteration proceeds with simplex
iterations antil *he linear constraints are satisfied. The Jacobian is then evaluated for
the second major iteration and Crash is called again to find a triangular basis in the
nonlinear rows (retaining the current basis for linear rows).

3 Crash is called up to three times (if there are nonlinear constraints}). The Rrst two
calls treat linear cqualities and linear tnequalities separately. As before, the iast call
treats nonlinear rows at the start of the second major iteration.

If i > 1. certain slacks on inequality rows are seiected for the basis first. (If ¢ > 2,
numerical values are used to exclude slacks that are close to a bound.) Crash then makes
several passes through the columns of A, searching for a basis matrix that is essentially
triangular. A column is assigned to “pivot” on a particular row if the column contains
a suitably large element in a row that has not yet been assigned. (The pivot elements
ultimately form the diagonals of the triangular basis.) For remaining unassigned rows,
slack variables are inserted to complete the basis.

Defaults

When minoss is in use, call miopt(’Defaults’) causes all MINOS options to be set to
their default values.

Expand frequency i Deiault = 10000

This option is part of an anti-cycling procedure designed to guarantee progress even on
highly degenerate problems.?

For linear models. the strategy is to force a positive step at every iteration, at the
expense of violating the bounds on the variables by a small amount. Suppose that the
Feasibility tolerance is §. Over a period of { iterations, the tolerance actually used by
MINOS increases from 0.54 to § (in steps of 0.58/1).

For nonlinear models, the same procedure is used for iterations in which there is only
one superbasic variable. (Cycling can occur only when the current solution is at a vertex
of the feasible region.) Thus, zero steps are allowed if there is more than one superbasic
variable, but otherwise positive steps are enforced.

Increasing i helps reduce the number of slightly infeasible nonbasic basic variables (most
of which are eliminated during a resetting procedure). However, it also diminishes the
freedom to choose a large pivot element (see Pivet tolerance).

LU density tolerance Ty Default = 0.6
LU singularity tolerance T2 Default = ¢2/® = 10~

The density tolerance ry is used during LU factorization of the basis matrix. Columns of L
and rows of I/ are formed one at a time. and the remaining rows and columns of the basis

'The EXPAND procedure is described in “A practical anti-cycling procedure for linearly constrained
optimization® P. E. Gill. W. Murray. M. A. Saunders and M. H. Wright, Mathematical Programming 45
[1989), pp. 437-4T4.

121 Appendix v MINOS 5.5

are altered appropriately. At any stage. if the density of the remaining matrix exceeds r,.
‘he Markowitz strategy for choosing pivots 15 altered to reduce the time spent searching for
each remaining pivot. Raising the density toierance zowards 1.0 may give slightly sparser
LU factors. with a slight increase in factorization nime.

The singularity tolerance r; helps guard against ill-conditioned basis malrices. When
the basis is refactorized, the diagona: elements of {7 are tested as follows: if ;17,,] < rp or
U, < romax, [{%; , the j-th column of the basis is replaced by the corresponding slack
variable, {This is most likely Lo occur after a restart. or at the start of a major iteration.)

In some cases. the Jacobian matrix may converge to values that make the basis exactly
singular. {For example, a whole cow of the Jacobian could be zero at an optimal solution.)
Before exact singularity cccurs, she basis could become very ill-conditioned and the opti-
mization could progress very slowly {if at all). Setting r; = 1.0e-5, say, may help cause a
judicious change of basis.

Minor damping paramster r Default = 2.0

This parameter limits the change in z during a linesearch. It applies to all nonknear
problems, once a “feasible solution™ or “feasible subproblem” has been found.

1. A linesearch of the form minimize, F{z ~ ap) is performed over 1he range 0 < a < 3,
where 3 is the step o the nearest upper or lower bound on r. Normally, the first
steplength tried is @; = min{1, 3).

2. In some cases, such as F(z) = ae®® or F(z) = ax®, even a moderate change in the
components of r can lead o floating-point overflow, The parameter r is therefore
used to define a limit 3 = 7{1+ ||z||)/)|pl|, and the first evaluation of F(z) is at the
potentially smailer steplength oy = min{1, 3, 3}.

3. Wherever possible, upper and lower bounds on = should be used to prevent evalu-
ation of nonlinear functions at meaningless poinis. The Minor damping parameter
provides an additional safeguard. The default value r = 2.0 should not affect progress
on well behaved problems, but setting r = 0.1 or .01 may be helpful when rapidly
varying {unctions are present. A “good” starting point may be required. Animportant
application is to the class of nonlinear least-squares problems.

4. In cases where severa] local optima exist, specilying a small value for r may help locate
an optimumn near the starting point.

Timing level i Default = 2

i =0 suppresses timing.
i =1 times input, solve and output.
i =2 times input, solve, output, funcen and funobj.

The values i = —1 and ~2 are the same as | and 2, except the times are not printed at the
end. If you are calling subroutine minoss, you may print the times in your own format by
accessing the following common block:

A3 Algorit-Lul}ic Changes 125

parameter (ntime = &)

COMMOT /mitim / tlasti{ntime), tsum{ntime), numt(ntime), ltime
where

numt (&) is the number of times clock k& has been turned on.

tlast(A} is the time at which clock £ was iast turned on.

tsum(k} is the total t:me elapsed while clock & was on.

ltime is the Timing level i.
For k = 1 to 3, clock & times input, soive, output, funcon and funobj respectively. See sub-
routines mitime and mieimp for further details, For Timing level 2, MINOS and minoss
ooth call mitime at the end of a run. This prints the “total time” statistics using a ioop of
the form

do k = 1, ntime
<call mitimp{ k, ’'Time’, <sum{k))
snd do

A.3 ALGORITHMIC CHANGES

1. The linesearch takes shorter steps if funobj or funcon return mode = —1 {mentioned
above).

2. “Basis repair” is sometimes invoked at the start of a major iteration, or following a
linesearch failure. A stable, sparse LU factorization of the combined basic/superbasic
matrix (B § | is computed by LUSOL in the form

/
BT .
P (o7) Q=LU,
where P and @ are permutations and L is well-conditioned. Then P provides a
reorderiag of the columns of (55) that makes the condition of the new B close
to optimal.

In the major iteration log, BSsup gives the number of variables that were swapped
between, B and §. (Zero means that the current basis was retained. The current
reduced Hessian matrix R is then also retained, to help solve the subproblem more
quickly.)

3. The triangular reduced-Hessian matrix R is now stored row-wise instead of column-
wise in an array r(+}, because most updating operations traverse the rows of £. This
reduces paging on a machine with virtual wemory and improves the use of cache
memory when there are many superbasics and Hessian dimension is large.

4. Nonlinear objective and constraint functions are not evaluated until the linear con-
straints have been satisfied (to within the Feastbilizy tolerance). Previously, any
nonlinear constraints were evaiuated at the starting point regardless of feasibility.

5. Gradient checking now takes place after the linear constraints have been satisfied.
Previously. it occurred at the starting point.

Appendix A, MINOS 5.5

Appendix B

Subroutine minoss

This appendix describes minoss. the subroutine version of MINOS. Later sections describe
an auxiliary routine (mispec) for reading a SPECS file. and some additional routines for
specifying individual lines of such a file as part of the cailing program.

Note that subroutine mispec must be called before the first call to minoss, even if a
SPECS file is not being read.

In the subroutine specifications, “double precision” entities are appropriate for most
machines, but in same cases {e.g. on Cray and Convex systems) they should be changed
to their “single precision” equivalents. In sowme installations, integer*4 may have been
thanged to integers2 throughout the MINQS source code, to conserve siorage. Otherwise,
both integer=4 and plain integer are intended to mean 4-byte words.

B.1 SUBROUTINE MINOSS

Problem data s passed to minoss as parameters, rather than from an MPS file. This is
generally more efficient and convenient for applications that would normally use a “matrix
generator”.

Specification

gubroutine minose(start, m, n, nbh, na, nnama,

$ nncon, nnobj, nnjac,
$ icbj, objadd, names,
$ a2, ha, ka, bl, bu, namal, nama2,
3 ng, xn, pi, re,
$ inform, mincer, ns, ninf, sinf, obj,
¢ z, nwcore)
implicit double precision (a-h,o-z)
character+(+) start
integer m, n, nb, ne, nname,
b nncon, nnobj, nnjac, iobj,
$ inform, mincor, ns, ninf, nwcorae
double precision objadd, sinf, obj
characters8 names(5)
integers4 ha{ne}, hs{ab)
integer ka(n+1), namei{nname), name2{nname)

double precision a(ne), bl(nb), bulnb)
double precision xn(nb), pi(m), rc(ub), z(nwcore)

127

12%

On entry:

start

nb

ne

nname

npcon
nnobj

nnjac

Appendix B. Subroutine minoss

specifies how a starting basis land certain other items) are to te obtained.

start = *Cold’ means that Crash should be used to choose an initial basis
junless a basis file is pravided),

start = ‘Warm’ means that a basis is already defined in hs {probably from
an earlier call).

start = 'Hot’ or 'Hot FHS’ implies a Hot start. hs defines a basis and an
earlier call has defined certain other things that shouid also be kept. Lhe
problem dimensions and the array z{*) must not have changed.
F refers to the LU factors of the basis.
H refers to the approximate reduced Hessian R.
S refers to column and row scales.

start

*Hot H' (for example) means that only the Hessian is defined.

start = ’Basis file’ is the same as start = Cold” (but is more mean-
ingful if an OLD BASIS, INSERT or LOAD file is provided).

is m. the number of general constraints. For LP problems this means the
number of rows in the constraint matrix A. If integer»4 has been replaced

5y integer*2 throughout the Fortran source code, m should not exceed 16383.
Oherwise there is essentially no upper limit.

In principle, m > 0, though sometimes m = 0 may be acceptable. (Strictly
speaking, Fortran declarations of the form deuble precision pi{m) require
m to he positive. In debug mode, compilers will probably enforce this, but
optimized code may sometimes run successfully with m = 0.]

is n, the number of variables {excluding slacks). For LP problems, this is the
number of columns in A (> 0).

is nb = n + m (the number of bounds in bl or bu).

is ne, the number of nonzero entries in A (including the Jacobian for any
nonlinear constraints). In principle, ne > 0, though again m = 0, ne = 0 may
work with some compilers.

is the number of column and row names provided in the arrays namel and
name?2. If nname = 1, there are no names. Generic names will be used in the
printed solution. Jtherwise, nname = »b and all names must be provided.

is m;, the number of nonlinear constraints (> 0).
is n{. the number of nonlinear ob jective variables {z 0).

is n//, the number of nonlinear Jacobian variables (> 0). If nncon = 0, nnjac =
0. If nncor > 0, nnjac > 0.

B.1 Subroutine minoss [29

iobj

objadd

names(5)

alne)
halna)

ka{n+t1)

bl (nh)

bu(nb)

says which row of A is a {ree row containing a linear objective vector ¢. If there
is no such vector, iobj = 0. Otherwise, this row must come after any nonlinear
rows, 50 that nncon < iobj < m.

is a constant that will be added to the objective. Typically objadd = 0.0c+0.

is a set of 8-character names for the problem, the linear objective, the ths, the
ranges and opounds. {This is a hangover rom MPS files. The names are used
in the printed solution and in some of the basis files.)

is the constraint matrix (Jacobian), stored column-wise.
is a list of row indices for each nonzero in a(*).

is a set of pointers to the beginning of each columa of the constraint mairix
within a{*) and ha{*). It is essential that ka{l) = 1 and ¥a(n + L) = ne+ 1.

1. 1f the problem has a nonlinear objective, the first nnobj columns of a and
ha belong to the nonlinear objective variables. Subroutine funobj deals
with these variables.

[]

if the problem has nonlinear constraints, the first nnjac columns of a and
ha belong to the nonlinear Jacobian variables. and the first nncon rows
of a and ha belong to the nonlinear constraints. Subroutine funcon deals
with these variables and constraints.

3. 1f nnebj > 0 and nnjac > 0, the two sets of nonlinear variables overlap.
The total number of nonlinear variables is nn = max{anobj, nnjac).

4. The Jacobian forms the top left corner of a and ha. If a Jacobian column
J {1 € j < nnjac) contains any entries a(k), ha(k) associated with
nonlinear constraints (1 < ha(k) < nncon), those entries must come
before any other (linear) entries.

5. The row indices ha(k) for a column may be in any order {subject to
Jacabian entries appearing first). Subroutine funcon must define Jacobian
eniries in the same order.

6. Columns of A should contain at least one entry, so that ka(j) < ka(j+1?
for every j. If a column has no meaningful entry, include a dummy entry
alk) = 0.0d4+0, halk) = L.

is the iower bounds on the variabies and slacks (z, s).

The first n entries of bl, bu, hs and xn refer to the variables z. The last m
entries refer 1o the slacks s.

is the upper bounds on (z, s).

Beware: MINQS represents general constraints as Az + s = . Constraints of
the form { < Az < u therefore mean { < —8 < u, so that —u < 3 < —{. The
last m components of bl and du are —u and —[.

130

Appendix B. Subroutine minoss

namei(nname), name2{nname)} are integer arrays.

hs(nb)

xu(nb)

pi(m)

ns

If nname = !. namel and name2 are not used. The printed soiution will
use generic names for the columns and rows. [f nname = nd. namei(j) and
namaz(;) should contain the name of the j-th variable in 2a4 format (; = 1 w
nb). If j = n — i, the j-th variable is the :-th row.

sometimes contains a set of initial states for each variable z, or for each variable
and slack (z. s). See next lines.

sometimes contains a set of initial values for each variable z, or for each variable
and siack {z, s).

1. For rold starts, yon must define hs(j) and xn(j), j = 1 to n. (The values
for j = n + 1 to nb need not be set.) If nothing special is known about the
problem, or if there is no wish to provide special information, you may set
helj) = 0, xn(j) = 0.0 for all § = 1 to n. All variabies will be eiigible
for the initial basis.

Less trivially, to say that variable j will probably be equal to one of its
bounds, set hs(j} = 4 and xn(j) = b1(j) or ha(j} = 5 and xn(j) =
bu(j) as appropriate.

2. For Cold starts with no basis file, a Crash procedure is used o select an
initial basis. The initial basis matrix will be triangular {ignoring certain
small entries in each column). The values hs(j) = 0, 1, 2, 3, 4, 5 have
the following meaning:

If hs{j) = 0, 1 or 3, Crash considers that column j is eligible for -he
basis, with preference given to 3.

If rs(j) = 2. 4 or 5, Crash 1gnores column j.

After Crash, columns for which hs(j) = 2 are made superbasic. Other

columns not selected for the basis are made nonbasic at the value xn(j) if
b1(j) < xn(j} < bu(j), or at the value b1{j) or bu(j) closest to xn(j).

3. For Warm or Hot starts, all of hs{1:nb) is assumed to be set to the values -
0, 1, 2 or 3 (probably [rom some previous call) and all of xn(1:nb) must
have values.

If start = ’Cold’ or Basis file” and an OLD BASIS, INSERT or LOAD file is
provided, he and xn need not be set at all.

contains an estimate of the vector of Lagrange multipliers (shadow prices) for
the nonlinear constraints. The first nncon components must be defined. They
will be used as Az in the subproblem objective function for the first major
iteration. If nothing is known about A, set pi(i) = 0.0d+0, ¢ = 1 to nncon.

need not be specified for Cold starts, but should retain its value from a previous
call when a Warm or Hot start is used.

B.1 Subhroutine minnss (3t

z(nwcore) s a {large) array that provides all workspace. Problems invelving m general
constraints 1ypically need nwcore at least JOOm. See the output parameter
mincor below.

On exit:

hs({nb) is the final state vector. If the solution is optimal or f{easible, the entries of hs
usually have the fvilowing meaning:
hs(j) 5 .te of variable j Usual value of xn(j)
0 nonbasic bi(i)
1 nonbasic bu{j)
2 superbasic Between b1(;) and bu(j)
3 basic Between bl(j) and bu(y)

Basic and superbasic variables may be outside their bounds by as much as the
Feasibility tolerance. Nate that if scaling is specified, the Feasibility
tolerance applies to the variables of the scaled problem. In this case, the
variables of the original problem may be as much as 0.1 outside their bounds.

but this is unlikely unless the problem is very badly scaled. Check the *Primal
infeasibility” printed after the EXIT message.

Very cccasionally some nonbasic variables may be outside their bounds by as
much as the Feasibility tolerance, and there mav be some nonbasics {or
which xn(j) lies strictly between its bounds.

If nint > 0, some basic and superbasic variables may be ouiside their bounds
by an arbitrary amount (bounded by sinf if scaling was not used).

xn(nb) is the final variables and slacks (z, 8).

pifm) is the vector of dual variables 7 (a set of Lagrange mutipliers for the general
constraints).

Tc(nb) is a vector of reduced costs, g—{ A [)T, where g is the gradient of the objective
funczion if xn is feasible, or the gradient of the Phase-1 ob jective otherwise. If
pinf = 0, the iast m entries are —7.

inform says what happened, as described more fully in Chapter 6.3. The next page
summarizes the possible values.

132 Appendix B. Subroutine mincss
inform eaning
0 Optimal solution found.
1 The problem is infeasible.
2 The prooiem is unbounded (or badly acaled).
3 Too many iterations.
4 Apparent stall. The solution has not changed for a
large number of iterations {e.g. 1000!.
5 The Superbasics limit is too small.
6 Subroutine funobj or funcon requested termination
by returning mede < (.
7 funobj seems to be giving incorrect gradients.
8 funcon seems to be giving incorrect gradients.
] The current point cannot be improved.
10 Numerical error in trying to satisfy the linear constraints
(or the linearized nonlinear constraints). The basis is
very ill-conditioned.
i1 (annot find a superbasit 1o replace a basic variable.
12 Basis factorization requested twice in a row.
Should probably be treated as inform = 0.
13 Near-optimal solution found.
Should probably be treated as inform = 9.
inform AMeaning
20 Not enough storage for the basis factorization.
21 Errer in basis package.
22 The basis is singular after several attempts to
factorize it (and add slacks where necessary).
30 An OLD BASIS file had dimensions that did not match the
current problem.
32 System error. Wrong number of basic variables.
40 Iatal errors in the MPS file.
41 Not enough storage to read the MPS file.
42 Not enough storage to solve the problem.
mincor says how much storage is needed to solve the problem. If inform = 42, the
work array z(nwcore) was too small. minoss may be called again with nwcore
suitabiy larger than mincor. (The bigger the better, since it is not certain how
much storage the basis factors need.)
ns is the final number of superbasics.
ning is the number of infeasibilities.
aint is the sum of infeasibilities.
obj is the value of the objective function. If nint = 0, obj includes the noniinear

objective if any. If ninf > 0. obj is just the linear objective if any.

B.2 Subroutine mispec 133

B.2 SUBROUTINE MISPEC

This subroutine must be called before the first call to minoss. It opens the SPECS, PRINT
and SUMMARY files (if they exist), sets all options to default values. and reads the SPECS
file if any. File numbers must be in the range 1 to 99. or 0 if the associated file does not
exist.

Specification

subroutine mispec(ispecs, iprint, isumm, nwcore, inform)

integer ispecs, iprint, isumm, nwcore, inform

On entry:

ispecs says whether or rot a SPECS file exists. I ispecs > 0, a file is read from the
specified Fortran file number. Typically ispecs = 4.

iprint says if a PRINT file is to be created. Typically iprint = 8.

isumm says if a SUMMARY file is to be created. Typically isumm = 6. In an interactive
environment, this value usually denotes the screen.

nweora is the length of the workspace array z{#*) that is later passed to minoss,

On exit:

inferm is § if there was no SPECS €le, or if the SPECS file was successfully read.
Otherwise, it returns the number of errors encountered.

B.3 SUBROUTINES MIOPT, MIOPTI, MIOPTR

These subroutines may be called from the program that calls minoss. They specify a single
option that might otherwise be defined in one line of a SPECS file.

Specification

subroutine miopt (buffer, iprint, isumm, inform
subroutine miopti(buffer, ivaluae, iprint, isumm, inform
subroutine mioptr(buffer, rvalue, iprint, isumm, inform }

charactaer*({*) buffer
integer ivalue
double precisicn rvalus
integer iprint, isumm, inform

134

Appendix B. Subrouutine minoss

On entry:
buffer

ivalue

rvalue

iprint

isumm

inform

On exit:

inform

s a string to be decoded as if it were a line of a SPECS file. For miopt, the
maximum iength of buffer is 72 characters. Use miopt if the string contains
all of he data associated with a particular keyword. For example,

call miopt ('Itaerations 10007, iprint, isumm, inform)
is suitable if che value 1000 is known at compile time.

For micpti and mioptr the maximum length of buffaer is 55 characters.

is an integer value associated with the keyword in buffer. Use miopti if it is
convenient to define the value at run time. For example,

itnlim = 1000
it (m .gt. 500} itnlim = 8000
call miopti{ ’Iterations’, itnlim, iprint, isumm, inform)

allows the iteration limit to be computed.

is a floating-point value associated with the keyword in buffer. Use mioptr if
it is convenient to define the value at run time. For example,

factol = 100.0d+0
if (illcon) factol = 5.0d+0
call mioptr{ ‘LU factor tol’, Tactel, iprint, isumm, inform)}

allows the LU stability tolerance to be computed.

is 2 file number for printing each line of data, along with any error messages.
iprint = 0 suppresses this output.

is a file number for printing any error messages. isumm = 0 suppresses this
output.

should be 0.

is the number of errors encountered so far.

B.4 Example Use of minoss 133

B.4 EXAMPLE USE OF MINOSS

File minost.for contains a Fortran test program to illusirate the use of subroutines mispec,
minoss. miopt, miopti and mioptr. The test program reads a SPECS file, generates test
problem MAXNNE (sce Pages 98-108 of the User’s Guide), sets some options not specified
in the SPECS file, then cails minoss to solve the problem.

The SPECS file is in minost.spc. The required function subroutines funobj and funcon
are part of the MINOS source file miOSfuns . for.

To use the test program, compile ana link minost.for and all of the MINOS source

files, excluding the stand-alone MINOS main program (miOOmain.for). See file unix.mak
or minost.mak.

To run the resulting binary file, see file unix.run or vminest.com.
Good luck with your own use of minoss!

File minost.for

L}
1
i
|
i
|
|
|
:
|
i
|
|
|
|
1
1
1
|
|
i
]

File minost.Zlor

This is a main program to test subroutine minoss, which is
part of MINOS §.5. It generates the problem called MANEE on
Pages 98-108 of the MINOS 5.1 User's Guide, then asks minoss
to solve it.

11 Nov 1991: First version.

27 Nov 1991: miopt, miopti, mioptr used to alter some optiona
for a second call to minoss.

10 Apr 1992: objadd added as input parameter %o minoss.

26 Jun 1992: integers*2 changed to integer*4.

15 Oct 1993: td4data now ountputs pi.

24 Jan 1995: NINOS inadvertently scales all of xn before solving,
so t4data sets dummy values for the slacks after all.

06 Feb 1998: ¥o longer have to set Jacobian = dense or sparse
when MINOS is called as a subroutine.

- # % #* R B # # N # F X H H # B ¥ =

prograa minost

implicit double precision (a-h,o-z)

parameter (maxm = 100,

$ maxn = 160,

$ maxtib = maxm + maxn,

$ maxne = 500,

$ nrame = 1)

character=*8 names(5)

integers4 ha(mazne} , hs(maxnb)

integer ka(maxn+1), namei(nname), name2({nname)

double precision a{mexne) , bl{maxnb) , bu(maxnb),

136 L Append_ix_D_. Subrourine miness

3 xn{maxnb; . pi{maxm) . relmaxnb)

parameter (nwcore = 50000)
double precision z(nwcore)

* Give names to the Problsm, Objective, Rha, Ranges and Bounds.

names(1)
names(?)
names(3)
namas (4}
names(5)

'mannetd
‘funobj
'zZero !
‘rangetl °
'boundl

"

Hou

[}

Specify some of tha MINDS filaes.

ispacs 13 the Specs file (0 1f nona).

iprint is the Print file (0 if none).

isunm 1 the Summary file (0 1f none).

(mispec opens these Ziles via mifile and micpen.)
nout 15 an output file used here by mitest.

* % B B & #

i
[+ S BT B

ispecs
ipraint
tsumm =
aout

- - — -

Set options to default values.
Read a Specs file (if ispecs > 0).

-

* & %

call mispec(ispecs, iprint, isumm, nwcore, inform)

if (inform .ge. 2) then
write{nout, *) ’'ispecs > 0 but no Specs file found’
sLop

and it

Generates a iC-pericd prodtlem (nt = 10].

Instead of hardwiring nt here, we could do the following:

1. say ¥onlinear constraints 10 in the Specs file.

2. At the top of this program include the following common block:
common /mBlen / njac ,nacon ,nnconO,nnjac

3. Say nt # nncon in the line below.

at = 10

call tddata{ nt, maxm, maxn, maxnb, maxne, inform,
$ m. n, nhb, na, nncon, hnobj, pnjac,

$ a, ha, ka, %l, bu, hs, xn, pi }

MR I I

it (inform .ge. 1) then

B.4 Examplc Usc of minoss 137

write(nout, ») 'Not encugh storage to generate a problem °
3 ‘with nt =’, nt
stop
end if

i e i i i o e ke o e A ¥ e e e i ke el . e e e o . o . =

Specify options that were not set in the Speacs file.
i1 and i2 may refer to the Print and Summary file respectivaely.
Setting them to O suppresses printing.

* * * * »

il =0
i2 =0
ltime 2

call miopti{ ’Timing level ', lcime, il, i2, inform)

- ——— - - - e - ——

Go for it, using a Cold start.
tobj} = 0 means thers iz no linear cbjactivae row in a(s).
objadd = 0.0 means there is no constant to be added to the
cbjective.
hs nesd not be set if a basis file is to be input.
Otherwise, each hs(1:n) should be 0, 1, 2, 3, 4, or 5.
The values are used by the Crash praocedure m2crsh
to choose an initial basis B.
If hs(j) = 0 or 1, column j ia eligible for B.
It hs(j) = 2, column j ia 1nitially superbasic {not in B).
It ha(j) = 3, column j is eligible for B and is given
preforence over columns with hs(j) = 0 or 1.
If hs{j) = 4 or 5, column j iz initially nonbasic.

L I N IR L K R B IR R BEE N

iobj =20
objadd = 0.0

For straightforward applications we would call minoss just once,
giving 1t all of z(*} for workspace.

Here we call it twice to illustrate situations where z(*) can be
expanded to suit the problem szize.

For the first call, set lenz foolishly small and let minoss
tell us (via mincor) how big it would like z(») to be.

* % & % 2 #* *

lenz = 2
call minoss(’Celd’, m, n, nb, ne, nnanms,
nncon, nnobj, nnjac,
iobj, objadd, names,
a, ha, kxa, bl, bu, namei, name2,
hs, xn, pi, re,
inform, mincor, as, ninf, sinf, obj,
z, lenz }

@ @ W W N

writalnout, =} 1 !

138 Appendix B. Subroutine minass

write(nout, =} 'Estimate of rsquired workspace: mincor =', mincor

* Since nwcor2 was not big enough, we will now have inform = 42.
* Make z(*) longer and try again, mincor SHOULD be enough.
* (In general we should allow more to gave the LU Iactors
* ag much room as possible). For example,
* mincor = mincor + S+«m + 1000 might be anough.)
*
* Note that we can't say z(») is longer than nwcore hera.
. minoss will return inform = 42 again if mincor > nwcore.
lenz = min(mincor, nwcore)
¢all minoss(’'Cold’, m, n, nb, ne, 2name,
$ nncon, nnobj, nonjac,
$ ioby, objadd, names,
$ a, ha, ka, bl, bu, namel, name2,
$ he, xan, pi, re,
$ intorm, mincor, ns, ninf, sinf, odj,
$ z, lenz)
vrite(nour, *) ' '
werite(nout, *) 'mincss finished.’
write(nout, *)} 'inform =', i1nform
wvrits(nout, *) ’nint =*, nint
write(nout, %)} ’sint =*, sint
writel{nour, *) 'obj =, obj
it (inform .ge. 20) go to 90Q
* hltar soma options and teat tha Warm start.
* e mm——— - e ——— S ———
. The following illustrates the use of miopt, miopti and mioptr
- to sat specific options. If necessary, we could ensure that
] all unspecified options take default values
* by first calling miopt ('Defaults’, ...).
* Beware that certain parametars would then need to be redefined.
write(nout, *) ' '
write(nout, *) ‘Alter opticns and test Warm start:’
inform = 0
itnlim = 20
panpar = 0_01
¢all miopt (° ', iprint, isumm, inform)
*—-~- call miopt { ’'Defaults ', iprint, isumm, inform)
#=—— c¢all miopti('Problem number ', 1114, iprint, isumm, inform)
#~=-=- call miopt { ’Maximize ', iprint, 1summ, inform)
call miopt (‘Derivative level 37, iprint, isumm, inform)
*——~ call miopt { 'Print lavel o, iprint, isumm, inform)
call miopt (‘Verity level o, iprint, isumm, inform)

B.4 Example Use of minoss

139

+ &+ #H # ¥ X ® #

® % % H B O# O® R B ¥ # A ** R

“ VSN

call miopt { ’Scale option o, iprint, isumm, inform)
call miopti(‘Iterationa ', italim, iprint, isumm, inform)
call mioptr(‘Penalty parameter ', penpar, iprint, lsumm, inform)

1f (inform .gt. 0) then
write{nout, *} 'NOTEZ: Some of the options were not recognized’
end if

Test the Warm stars.
hs{*) specifies a complate basis from the previous call.
A Warm start uses hs(») directly, without calling Crash.

Warm and Hot starts are normally used after minoss has solved a
problem with the SAME DIMENSIONS but perhaps altered data.

Here we have not altered the data, 2o very feu 1terations
should be required.

ctall minoss(’Warm’. m. n. nb, ne, nname,
nncon, nnobj, nnjac,
icb), objadd, names,
a, ha, ka, bl, bu, namel, name2,
hs, xn, pi, re,
inform, mincor, ns, ninf, sinf, obj,
Z, hwcore)

write{mout, *)} '’

write(nout, *) 'minoss finished again.’
write(nout, *) 'inform =’, inform
writa(nout, *) ’'obj =*, obj

it (inform .ge. 20) go to 900

Alter more options {perhaps) and test the Hot start.

As with a Warm start, hs(*) specifies a basis fronm the

previous call. In addition, up to three items from the previous
call can be reused. They are denoted by F, H and 5 ss follows:

'Hot F’ neans use the existing basis FACTORS (B = LU).
‘Hot H' means use the existing reduced HESSIAN appreoximation.
'Hot §° means use the existing column and row SCALES.

'Hot FS’ means use the Factors and $cales but not the Hessian.
'Hot FHS' means use all three items.

’Hot’ is equivalent to 'Hot FHS’.

The latters F, H,S may be in any order.

Note that ’'Hot’ keeps axisting scales. Hust say

‘Hot E’ or 'Hot ...’ or something longer than 4 characters

if new scales are wanted.

yrite{nout, *) ' °

write(nout, *} 'Test Hot start:’
call mioept (' ’,
call miept { 'Scala optien 2,

iprint, isumm, inform }
iprint, isumm, inform)

140 . Appendix B. Subroutine minass

c¢all minoss('Hot H’', =, mn, nb, he, nname,
nncor., nnobj, nrjac,
10bj, objadd, names,
a, ha, ka, bl, bz, namsil, nama2,
hs, xa, pi, rc,
inform, mincer, ns, ninf, sinf, obj,
Z, nwcore)

“ e e R

write(nout, *) ' !
write{nout, *} ’'minoss finished again.’
write{nout, =) ’‘inform =’, inform

urite{nout, *) ’abj =, obj
if (inform .ge. 20} go to 900
stop

- P e ——————————————

Error exit.

x ————————————— —— -
900 write(nout, =) * ?’

arite(nout, *) ’STOPPING because of error condition’
stop

* end ¢f main program to test subroutine minoss
snd

PUTSTTTIRTETERPER TS s TE TS FEY SRR RTINS R TR L LRSS ST A i L e A e Rt
subroutine t4data(nt, maxm, maxn, rpaxnb, maxne, inform,

$ ®, n, nb, ne, hhcon, anobi, nnjac,
$ a, ha, ka, b1, by, hs, zn, pi)

implicit double precision {(a-h,o-z)

integers4 ha({naxne}, hs{maxnb)

integer xa{maxn+1)

double precision a(maxns) , bl(maxnb), bu(maxab),

$: xn(maxnb), pi(maxm)
- - _— — - -
= t4data gensratea data for ths test problem timanne
* (called problem MANNE in the MINGS 5.1 User’s Guide).
= The constraints take the form
» f(x) + A*+x + 3 = 0,
» whers the Jacobian for f{x) + Ax is stored in a{+}, and any
¥ terms coming from f(x) are in the TOP LEFT-HAND CORNER of a(+),
* with dimensions nmcon X nnjac.
» Note that the right-hand side is zaro.
- 5 is a set of alack variablos whose bounds contaisn any constants
* that might have formed a right-hand side.
¥
* The objective function is

B.4 Example Use of minoss

PN

4 % % B X K ® B R E R =R

*

* % B O R & B 4 R O %R H R KR

this example).

On entry
at

Fi{x) + ¢’'x
where ¢ would be row i1obj of A (but there is no such row tn

»

18

T, the number
MAXM, MAXN, maxnb, maxne

F{x) znvclves only the FIRST nnobj variables.

of time periods.
are upper limits on m, n, nb, ne.

On exit,

inform is O if there 1s enough storage, 1 ctherwise.

m is the number of nhonlinear and linear constraints.

n is the number of variables.

nd is n + m.

ne is the number of nonzeros in a(*),

nncen iz the number of nonlinear constraiats (they come first).
nnobj is the number of nonlinsar objective variables.

nnjac is the number ¢f nonlinear Jacobian variables.

a is the constraint matrix (Jacobian}, stored column-wise.
ha is the list of row indices for each nonzero in a(#*).

ka is a set of pointers to the beginning of sach column of a.
bl is the lower bounds on x and s.

bu 1s the upper bounds on x and s.

ha(1:n) is a set of initial states for sach x {0,1,2,3,4,5).
xn{1:n) is a set of initial values for x.

Pi(i:m) 13 a set of initial values for the dual variables pi.

09 Jul 1992: No nead to initialize xrm and hs for the slacks.

1§ Detr 1993: pi is now an ontput parametsr. (Should have been

all along.)
24 Jan 1995: MIKOS inadvertently scales all of xn before solving,
80 we set dummy values for the slacks after all.

parameter (zero = 0.04+0, one 3 1.04+0,
$ dummy = Q.1d+0, growth = ,03d+0,
$ bplus = 1.0d+20, bminus = - bplus)

nt defines the dimension of the problam.

m
n
nb
nncon
nnecbj
nnjac
ne =

[}

Check if

inform =
it (m

nt*2
nt*3

n

nt

+m

nt*2

nt

nt*6 ~ 1

thers is snough storage.

0

.gt. maxm) inform = 1

142 Appendix B. Subroutine minoss
if (n .gt. maxn ; inform = 1
if (nb .8%. maxnb} inform = .
17 (ne .gT. maxne; inform = 1
it (inform .gt. O return
* Generate columns for Capital (Kt, ¢ = 1 to nt),
. The first nt rows are nonlinear, and the next nt are linear.
* Tha Jacobian iz an nt x nt diagonal.
* We generate the sparsity pattern hers.
. We put in dummy numerical values of 0.1 for the gradients.
* Real values for the gradisnts are computed by t4con.
ne =0
de 100 k =1, nt
* There is one Jacobian nonzero per column.

ne = ne + 1
xa(k) = ne
ha(ne) = k
a{ne) = dummy

The linsar constraints form an upper bidiagonal pattern.

it (k .gt. 1) themn

ne =rne + 1
hafne) = nt + k - 1
a{ne) = one

end if

ne = ne + 1

ha(ne) = nt + &

a(nea) = -~ one

100 continue

The last nonzero is special.
a(ne) = growth
Generate columns for Consumption (Ct for t = 1 to nt}).

They Torm -I in the first at rows.
jC and jI are base indices for the Ct and It variables.

i< = nt

jI = nt*2

do 200 k =1, nt
ne = ne + 1
ka(jC+k) = ne
ha(ne) k

a{ne) - ona

B.4 Example Use of minoss

143

* 4 4 % »

200

300

409

continuse

Generate columns for Investment (It for < = 1 to nt).

They fcrm -I in the first nt rows and -I in the last nt rovs.

do 300 k = 1, nt
ne =ne + 1
ka(jI+k) = ne
ha(ne)} =k
a(ne) = - ons
ne = na + 1
a(ne) = ~ ona
ha{na) = nt + k

continus

ka(*) has one extra element.
kxa{n+l) = ne + 1

Set lower and upper bounds for Kt, Ct, It.

Alao initial wvalnas and initial states for all variablaes.
The Jacobian variables are the most important.

Set hs(k) = 2 to make them initially superbasic.

The others might as well be on their smallest bounds (hs(j) = Q).

do 400 k =1, nt
b1(k) = 3.058d+0
bu{ k) = bplus
bl(jC+k) = 0.953+0
bu{jC+k) = bplus
b1l(jI+k) = 0.05d+0

bu(jI+k) = bplus

xn{ k) = 3.0d+0 + (k - 1)/10.0d+0
xn(jC+k) = Bl(jC+Xx)

xknf{jI+vk) = vR{jI+en)

hs(x) =2

hs{jC+Xx) = O

hs(jI+k) = 0
continue

The first Capital is fixed.
The last three Investments are bounded.

bu(1) = b1(1)
(1) = b1{1)
ha(1) =0
bu(jI+nt-2) = 0.112d+0
bu(jI+nt-1) = C.114d+0

bu(jI+at) = 0.116d+0

111 ‘ Appendir B, Suhrountine minoss

* Set bounds on the slacks.
. The nt nonlinear (Mcney} TOVS are >3,
* The nt linear (Capacit¥) rows are <=.
* We no longer need to set initial values and stateas for slacks.
* 24 Jan 1995: MINOS inadvertently scales all of xn befcre solving,
* sc we set dummy values for the slacks after all.
iM =n
3y =n +nt
do 500 Xk=1,nt
bl{jM+k) = bminus
bu(jN+k) = zezo
DPL{JY+K) = ZeIo
bu{jY+k) = bplus
xu{jM+k) = zere
xn(j¥+k) = zero
a— ha(jM+k) = O
- hs{iY+k) = 0

500 continus
* The last Money and Capacity rows have a Range.

b1{jM+nt) = - 10.04+0
bu{jY+nt) = 20.04+0

Initialize pi.
5.4 requires only pi{l:nncon) to be initialized.
5.5 may want all of pi to ba initialized (not yet sure).

do 600 1 = 1, nt
pidi) = - ons
pi(nt+i) = + one
800 continue

= end of tddata
end

B.5 MINOS(IIS): Debugging Infeasible Models 145

File minost.spc

Begin mannaiQ (10-period economic growth model)

Problem number 1114
Maximize
Major iterations 8
Minor iterations 20
Penalty parameter 0.1
Hesgian dimension 10
Darivativa lavael 3
* Verify gradients
Verify levsl 0
Scale cption 2
Scale optioh 1
Iterations &0
Print level (jilxb) 00000
Print frequency 1
Summary levsel o
Summary fresquency i
End Manneil

B.5 MINOS(IIS): DEBUGGING INFEASIBLE MODELS

If the linear constraints in a model cannot be satisfied, MINOS will exit with the message
“The problem is infeasihle™. This nsnally implies some formulation error in the model. The
printed solution shows which variables or slacks lie outside their bounds. and by how much.
However, the exact cause of infeasibility may be difficuit to detect.

In such cases, further analysis is provided by MINOS(IIS}, a modified version of MINGS
available from John Chinreck at Carleton University:

J. W. Chinneck {1993). MINOS(IIS) 4 2 User’s Manual, Report SCE-93-17, Department
of Systems and Computer Engineering, Carleton University, Ottawa, Canada K15 5B6.

Phone: (613)788-5733, Fax: (613)788-5727, Email: chinneck@sce.carleton.ca.

